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Abstract

Due to the two-dimensional nature of thin plates, the lamination theory considering the composite laminates with in-
plane and plate bending problems coupling each other is treated in this paper by using complex variable formulation.
By following the steps of Stroh formalism for two-dimensional linear anisotropic elasticity, a displacement complex
variable formalism developed by the other researchers was introduced and re-derived in a different but more Stroh-like
way. In addition, a brand-new mixed formalism (mixed use of displacements and stresses as basic functions) is es-
tablished to compensate the displacement formalism. In order to transfer all the related formulae and mathematical
techniques of the Stroh formalism to these two formalisms, the general solutions for the basic equations of lamination
theory and their associated eigenrelations have been purposely arranged in the form of Stroh formalism. Moreover, by
using the presently developed mixed formalism, the explicit expressions for the fundamental matrix and eigenvectors are
obtained first time for the most general composite laminates. Furthermore, letting the coupling stiffness vanish, the
formalism has been reduced to the case of symmetric laminates and checked by a recently developed Stroh-like for-
malism for the plate bending problems. The comparison between Stroh formalism for two-dimensional problem, Stroh-
like formalism for plate bending problem, displacement formalism and mixed formalism is then made at the end of this
paper, and through their connection some useful relations are obtained.
© 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Lamination theory; Complex variable formalism; Anisotropic plates; Stroh formalism; Lekhnitskii formalism; Plate
bending problem; Inplane problem

1. Introduction

Although the classical lamination theory was developed long time ago (Jones, 1974), it is not easy to
apply this theory to find an analytical solution for the problem with curvilinear boundaries, especially when
the laminates are composed of the laminae that will make the in-plane and plate bending problems couple
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each other. For example, the problems of composite laminates with holes/cracks/inclusions, which have
been discussed and solved vastly in two-dimensional problems, are still difficult to be solved when the
laminates are subjected to out-of-plane bending moments. Because this kind of problems was solved by the
complex variable formalism in two-dimensional deformation, it is hoped that similar formalism can be
developed for the classical lamination theory.

For two-dimensional linear anisotropic elasticity, there are two major complex variable formalisms in
the literature. One is the Lekhnitskii formalism (Lekhnitskii, 1963, 1968) which starts with the equili-
brated stress functions followed by constitutive laws, strain—displacement relation and compatibility
equations; the other is the Stroh formalism (Stroh, 1958, 1962) which starts with the compatible dis-
placements followed by strain—displacement relation, constitutive laws and equilibrium equations. Due to
the special feature that Stroh formalism possesses an eigenrelation which relates the eigenmodes of stress
functions and displacements to the material properties, recently Stroh formalism becomes more attractive
than Lekhnitskii formalism, especially when the book (Ting, 1996) emphasized on Stroh formalism was
published. Due to this reason, the efforts of this paper will be focused upon the establishment of a
counterpart of Stroh formalism for the lamination theory. If the formulae developed for the lamination
theory can be purposely arranged into the form of Stroh formalism for two-dimensional linear anisotropic
elasticity, almost all the mathematical techniques developed for two-dimensional problems can be
transferred to the coupled stretching-bending problems. Thus, by simple analogy, many unsolved lami-
nation problems can now be solved if their corresponding two-dimensional problems have been solved
successfully.

Tracing the literature, we found that Lekhnitskii has ever developed a complex variable formalism for
the plate bending problems (Lekhnitskii, 1938), and used his formalism to solve the problems of ortho-
tropic plates containing circular holes or rigid inclusions (Lekhnitskii, 1968). After that, very few contri-
butions can be found in the literature for the improvement of complex variable formulation in plate
bending problems, although some related works have been touched such as Qin et al. (1991). Recently,
through the understanding of the connection between Stroh formalism and Lekhnitskii formalism for the
two-dimensional problems, I (Hwu, in press) developed a Stroh-like formalism for the bending theory of
anisotropic plates, which can be applied directly to the symmetric laminates. By this newly developed
formalism, we successfully obtained the analytical solutions for the problem of anisotropic plates with
holes/cracks/inclusions subjected to out-of-plane bending moments (Hsieh and Hwu, 2002a). However, it is
difficult to apply the same approach to the unsymmetric laminates with in-plane and plate bending cou-
pling. Instead of using the advantages of Stroh—Lekhnitskii’s connection, a displacement-based derivation
has been introduced by Lu and Mahrenholtz (1994) and modified by Cheng and Reddy (2002). In addition,
some researchers devoted their efforts to the development and application of the complex variable method
on the laminates with bending extension coupling such as (Becker, 1991; Zakharov, 1992). Due to the
complexity, the resemblance between the Stroh formalism and the displacement formalism as well as the
published complex variable methods is not perfect enough to employ most of the key features of Stroh
formalism. Thus, to get the solutions for the bending extension coupling problems one cannot directly
duplicate from their corresponding two-dimensional counterparts, detailed derivations instead are still
needed such as a number of problems solved by Becker and Zakharov (Becker, 1992, 1993, 1995; Zakharov
and Becker, 2000; Engels and Becker, 2002).

By comparing the formalisms developed by Hwu (in press), Lu and Mahrenholtz (1994) and Cheng and
Reddy (2002), we found there may exist an alternative formalism that is more alike to the Stroh formalism
for two-dimensional problems. In this paper, we call it mixed formalism because in our derivation the basic
functions are not pure displacements or pure stresses but in-plane displacements plus plate bending mo-
ments. The associated eigenrelation of the mixed formalism shows that it is really more alike to the Stroh
formalism. Moreover, by the mixed formalism, the explicit expressions of the material eigenvectors have
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been obtained in this paper. In addition, the explicit expressions of the fundamental elasticity matrices of
Stroh-like formalism for symmetric/unsymmetric laminates have also been obtained through the use of
mixed formalism developed in this paper (Hsieh and Hwu, 2002b).

To have a deep insight of the complex variable formalism for lamination theory, both the displacement
and mixed formalisms are presented in this paper. By comparing these two formalisms with the Stroh
formalism for two-dimensional problems (Ting, 1996) and the Stroh-like formalism for plate bending
problems (Hwu, in press), we find that both of them are not perfectly match with the Stroh formalism.
Combining use of these two formalisms may be a good approach for solving practical lamination problems.
Thus, relations between these two formalisms are also provided in this paper.

2. Lamination theory

To describe the overall properties and mechanical behavior of a laminate, the most popular way is the
classical lamination theory (Jones, 1974). According to the observation of actual mechanical behavior of
laminates, Kirchhoff’s assumptions are usually made in this theory. Based upon the Kirchhoff’s assump-
tions, the displacement fields, the strain—displacement relations, the constitutive laws and the equilibrium
equations can be written as follows.

2.1. Displacement fields

ow(x,
u(xayvz) :uo(x,y)—z éxy)a
ox2) = o) 2, 1)

w(x,y,z) = WO(xay)v

where u, v and w are the displacements in x, y and z directions, and uy, vy and w, are the middle surface
displacements.

2.2. Strain—displacement relations

& = &0+ 2K, & = .92 + zKy, Yy = y_gy + zkyy, (2.2)
where
0 0 0 0
g0 e Oy D
T Ox Yoy w0y x (23)
o*w o*w *w '

Ky =—%3> Ky =—=7, Kyy = =223

’ Ox? ’ 0y? ’ Ox0y

where (¢, ¢, 7,,) are the strains, (&, s_(v), yf()y) are the mid-plane strains and (x,, k,, k) are the plate curvatures.
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2.3. Constitutive laws

N, Ay An Ais B B Bis &)

N, A, A» Ax B Bn By 8_8

Ny, _ A Az Ass Bis Bax B Vfgy (2.4)
M, Bi Bin Bis D Di Dig ke [ '
M, By By By Dy Dy D Ky

M., Bis By Bes Dis Dy Des Kyy

where N,, N,, N,, are the resultant forces and M,, M,, M,, are the resultant moments. 4;;, B;; and D;; are,
respectively, the extensional, coupling and bending stiffnesses, and are determined by
n__ 1 n_ l n_
Aij =Y (0l —h 1), By = 3 > (@) —hi ), Dy = 3 > (0l — k), (25)
k=1 k=1 k=1

where #; and h;,_; denotes, respectively, the location of the bottom and top surface of the kth lamina

(Fig. 1). (Q,), is the transformed stiffness matrix of the kth lamina.

2.4. Equilibrium equations

ON, | N _,
Ox oy

=0, (2.6a)

Fig. 1. Laminate geometry, resultant forces and moments.
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M, M,  OM,
B T2 ady o 470 (2.6b)

where ¢ is the lateral distributed load applied on the laminates. Note that Eq. (2.6b) represents the forces
equilibrium in the thickness direction, which is usually written in terms of the transverse forces O, and O, as
00, , 00,

= 0. 2.7
- +ay+q (2.7)

The moment equilibrium in the x- and y-directions shows that the transverse shear forces are related to the
bending moments by

oM, oM, oM, oM,

O = Ox oy ’ O = Ox dy

(2.8)
Substituting (2.8) into (2.7), we get Eq. (2.6b).

2.5. Governing equations

To get governing equations satisfying all the basic equations, we first use (2.3) to express the mid-plane
strains &, ¢ }, yx and curvatures k., K,, Ky, in terms of the mid-plane displacements uo, vy and w, then use
(2.4) to express the resultant forces N, N,, N,, and moments M., M,, M,, in terms of the mid-plane dis-
placements. After these direct substltutlons the three equlhbrlum equatlons (2.6) can now be written in

terms of three unknown displacement functions ug, vy and w as

%uy %uy 0%up v, 0%v, 0%v, Pw Pw
An == e >+ 2/116a 3 +A66a—y2+A16 a2 " (412 + Aos) o ay+A26 e —Bugs - 3316%
Ow O*w
— (B2 +2Bgs) x5 ez, BT 0, (2.9a)
62u0 62u0 621/{() 6217() 621)0 6200 63W
i o2 + (A1 + Aos) - o0 + A A + Ags Fe) + 245 0y +A4x» B2 By o
Ow w Ow
— (B 2B¢6) =—— — 3By =—== — Bn— = 2.
(B2 + 2B¢s) ooy 3B 2 T2y 0, (2.9b)
*w o*w o*w o*w o*w *uy Pug
Dir g +4Dis gz + ADra + 2Due) gz 4 4D o 4+ Dy = Bu s = 3Bz o
6 Uy 631,{0 631)0 0 [20) 6 Vo 0 [20)
— (Bi2 + 2Bg) gy Dn s Bis—== 0 — (Bia + 2Bss) =5 2% % Ady? D25y q, (2.9¢)

which are the governing equations for the laminated plates.

The governing equations shown in (2.9a,b,c) are system of partial differential equations with three un-
known functions u, vy and w. Due to the mathematical complexity of these equations, it is not easy to get
solutions by solving these partial differential equations. In practical engineering applications, it is common
to have a symmetric laminate or to construct a balanced laminate. In those cases the coupling stiffness
components like B;; and/or A6, 4> and/or Ds, D will be zero, and Egs. (2.9a,b,c) will be drastically
simplified.
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2.6. Boundary conditions

For the general cases of laminated plates, the in-plane and bending problems will couple each other.
Hence, every boundary of the plates should be described by four prescribed values. Two of them corres-
pond to the in-plane problems and the other two correspond to the bending problems. Generally, they may
be expressed as

~

u,=u, or N,=N, or N,=k,u,,
u, =4, or N,=N, or N,=ku, (2 10)
wW,=w, or M,=M, or M,=k,w,,

w=w or V,= /I},, or V,=kw,
where 7, is the well known Kirchhoff force of classical plate theory, or called effective shear force defined by
oM,
ar
The subscripts n and ¢ denote, respectively, the directions normal and tangent to the boundary. The overhat

denotes the prescribed value. The values in the n— coordinate can be calculated from the values in the x—y
coordinate according to the transformation laws.

Vi=0u+ (2.11)

3. Displacement formalism

The governing equations (2.9a,b,c) involve both in-plane and plate bending problems, i.c., these two
problems are coupled each other if the coupling stiffnesses B;; are not equal to zero. Due to the mathe-
matical complexity, very few systematic approaches can be found in the literature. Because of the two-
dimensional nature of the plate bending problems, it is hoped that the complex variable method which is
powerful and elegant for the two-dimensional problems can also be applied to the plate bending problems.
For the two-dimensional linear anisotropic elasticity, there are two important books published in the lite-
rature. One is by Lekhnitskii (1963), and the other is by Ting (1996). The former concerns a stress for-
malism which is generally called Lekhnitskii formalism, whereas the latter concerns a displacement
formalism which is generally called Stroh formalism (Stroh, 1958). In this section, we will use the mid-plane
displacements and slopes as our basic functions, which is therefore called displacement formalism. Actually,
this approach has been introduced by Lu and Mahrenholtz (1994) and modified by Cheng and Reddy
(2002). In addition to the displacement formalism, by using mid-plane displacements and bending moments
as basic functions, a brand-new formalism called the mixed formalism will be introduced in the next section.

Although several different kinds of displacement formalisms have been developed in the literature, some
fail in their eigenrelation and some fail in their complexity. To have a correct and clear formalism, in this
section we re-derive the displacement formalism in a more Stroh-like approach. For the convenience of
later derivation, we will firstly rewrite all the basic equations (2.1)—(2.8) in terms of tensor notation as
follows:

U=u+zp, Pi=-wi, Br=-wy,

&y = ey +zry = 3(Uy+Uy), ey = 5wy +up), =3B+ B),
Nij = Ajjuern + Bijuku, Mij = By + Diicu,

Nj; =0, My;+q=0, 0;,=M;,, i,j,k,1=12.
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Note that in the above tensor notation, we have made a slight change for some symbols and employed the
following conventional replacements,

xe1l, yeo2 1lel, 222, 12o0r 2l <6, (3.2a)
for example,

u—U, veU, u < u, o< u,

0 0
& — &y, Yy 2¢),, & e, Yy e 281y, Ky & Kpp, Kyy < 2K12, (3 2b)
NyHNZZa MX}’(_)M127 QXHQM
Ann < Ais,  Boin < By, Digia < Des, ..., €tC.

It should be noted that the replacements of shear strain 7,, and curvature k,, are not only symbol change
but also two times difference, which is the same as the conventional contracted notation (Sokolkoff, 1956).

Substituting the strains/curvatures and displacements/slopes relations into the constitutive laws, i.e.,
substituting (3.1), into (3.1);, the resultant forces and moments may be expressed in terms of mid-plane
displacements u; and slopes f5; as

Ni; = Aijuties + BijuaBrss M;; = Bty + DijaBy- (3.3)

By employing the results of (3.3) to the equilibrium equations (3.1),, the governing equations may also be
expressed in terms of the mid-plane displacements u; and slopes f3; as

Aijuivir i + Bija By = 0, Bty 1ij + Dy Br iy +q = 0. (3.4)

Consider the homogeneous case that no lateral load is applied on the laminates, i.e., ¢ = 0. Because
the mid-plane displacements u; and slopes f3; depend only on two variables, x; and x,, and (3.4) are homo-
geneous partial differential equations, we may let

we=dlf(2), Bi=alf(z), z=xi+m, k=12 (3.5)
Differentiation of (3.5) with respect to x; gives
U = a;(0n + udn)f'(2), Bii = ay(on + udp)f'(2), (3.6)

in which the prime (') denotes differentiation with respect to the argument z and J;; is Kronecker delta.
Further differentiating with respect to x; and x;, we find that (3.4) with ¢ = 0 will be satisfied if

{Qu + n(Ry +RY) + 1*Ta}a, +{Qy + n(Rs + Ry) + 1’ Ty}ay =0,

w{Qy + u(Ry + Ry) + 10 Ts}a, + 1w {Qp + u(Rp + Rp) + 1’ Tplay =0,
where

Q, = A, Q; = B, Qp = Dii,

Ry = Aina, Rp = Bisa, Rp = Diipa,

T, = Ao, Tz = B, Tp = Diya, (3.7b)

ay af i 1
a, = (0 ag = 5 (0 p= .
a, a, u

From the second and third equations of (3.1); and the assumption of the slope f, given in the second
equation of (3.5), we get

al = udl. (3.8)

(3.7a)
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Egs. (3.7) and (3.8) constitute four equations with four unknowns af, a5, af, ag . Thus, the problem is solved
in principle. Substituting (3.6) into (3.3), we have

Ny = 7,ubufl(z)a Np = buf,(z)v

y 3.9a
My = [, Ma=df(2) (%)
where
1
b, = (R/T1 +uTy)a, + (RE + uTp)ap = _;{(QA + uR,)a, + (Qp + uRp)ag},

d= (R, + uTp)a, + (R} + uTp)ay, (3.9b)
. 1
d = *ﬁ{(QB + uRg)a, + (Qp + uRp)ag}.

Note that the second equality of (3.9b); comes from (3.7a);. Using the relation for the bending moments
and transverse shear forces given in the third equation of (3.1)4, and the definition for the effective
transverse shear force given in (2.11), and the results for the bending moments given in (3.9a),, we obtain

O = u(d —d")f"(2),

3.10
o=l Qd—d)f"(2),  Va = pil(d—2d)/"(2), (:100)

where

ilz{(l)}, izz{?}. (3.10b)

With the definitions of d and d* given in (3.9b), the second equation of (3.7a) leads to

pT(d—d)=0. (3.11)
Substituting (3.9a), into the symmetry condition of the twist moments, i.e., M, = M, we have
di = —ud;. (3.12)

Combining (3.11) and (3.12), we may express d* in terms of d, or vice versa. Through their relation, we now
introduce a new vector by as

b
by = d + boi; = d* + — iy, (3.13a)
u
where
bo = Ty = 4B + ubh) = di + pd>. (3.13b)

By the relation given in (3.13), the expressions for the bending moments and transverse shear forces ob-
tained in (3.9a), and (3.10a) can now be written as

My = (—ubg + boia) f'(2), My = (by — boly) f'(2),

_ —H 1 _ —,uzbg 11 (314)
Q,-bo{ 1 }f @), V,-{ " }f (2).

Observing the results obtained in (3.9a) and (3.14), we introduce two stress functions

b, =bifz), Y =bf(2). (3.15)
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With the use of these two stress functions, the moments, transverse shear forces and effective transverse
shear forces can be expressed as

Nip = =¢is, No = iy,
M, = —szz - %;“illpk,k7 My = ‘//i,l - %/Iizlﬁk,w
Ql = —%‘Pk,kza Qz = %lpk,kh
n= _‘pz,zzv V= l//1,11>
where 4;; is the permutation tensor defined as
A =i =0, Aip=—/4y =1L (3.17)

Up to now, the formalism is almost complete because the displacements, slopes, moments, and trans-
verse shear forces have all been expressed elegantly in (3.5), (3.15) and (3.16). The eigenvalues u and the
displacement eigenvectors a,, az can be obtained from (3.7a) and (3.8), and the stress function eigenvectors
b,, bg can be obtained from (3.9b) and (3.13). From (3.7) and (3.8), the determination of the eigenvalues u
will lead to an equation of 8th order polynomial, which can be proved to have eight roots with four pairs of
complex conjugates (Cheng and Reddy, 2002). By arranging the complex eigenvalues whose imaginary
parts are positive to be the first four eigenvalues, and superimposing all their corresponding solutions, the
solutions shown in (3.5) and (3.15) may now be written in a compact matrix form as

(3.16)

u; = 2Re{Af(z)}, ¢, = 2Re{B.f(2)}, (3.18a)
where
_Ju _Jo
lld—{B}, d)d_{\lf}’ (3.18b)
Adz[al a4  as 24]» Bd:[bl by b; b4]7
Sfi(z)
f(z) = ?Ezzi o= 4um,  k=1,23,4, (3.18)
J3\z3
Sa(za)
and
_Jum i B _ ¢, _ ¥
u{uz}7 B{ﬁz}, ¢ {ﬁbz}’ v {‘//2}, (3.18d)

a, b,
ak{ } bk{ } k=1,2,3,4.
a )y bg ),

In order to establish an eigenrelation like the Stroh formalism for two-dimensional problems, we re-cast
(3.9b), and (3.13a) with the assist of (3.9b),; into

Q -1, al _ [-R —I+1Ily4]fa
[RT I+ \b ) -1 L [\b ) (3.19a)
where

_ Qs Q _[R/ R [Ty T
Q_[QZ Qﬂ R‘{RZ Rﬂ’ T—{T; Tf,] (3.19b)
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a—{:ﬁ} _{L’;}. (3.19¢)

In the above, I denotes the identity matrix, and I, stands for a matrix with all zero components except the
mn component, for example,

0 0 0O 0 00O
0 0 0O 0 0 0O

134 =10 0 0o 1] I44 =100 o0 ol ,etc. (320)
0 0 0 0 0 0 0 1

In order to see more clearly the eigenrelation shown in (3.19a), we now write down the expressions of
QAa QBa s 7TD deﬁned il’l (37b) as

Ay A By Bis Dyy Dis
QA:|: :|7 B:|: :|7 QD:|: :|>

As Ass Bis  Bes Dys  Des
A A B B D D
RA _ |: 16 12:|’ RB: |: 16 12:|7 RD: |: 16 12:|7 (321)
Ags A Bess  Bas D5 Das
A A B B D¢s D
TA: |: 66 26:|’ TB— |: 66 26:|7 TD: |: 66 26:|.
Az Az By Bxn Dys Dy
By expanding (3.19a) with the assist of (3.21), we observe that the 2nd and 5th equations of (3.19a) will
ensure the equality b} = —ubs, which is also the consequence of the symmetry of in-plane forces, i.e.,

Ni; = Ny by (3.9a),. Moreover, it is observed that the 4th and 7th equations of (3.19a) are identical, which
has also been noticed by Cheng and Reddy (2002). Due to the equivalence of the 4th and 7th equations,
only seven independent equations remain in (3.19a). The extra independent equation may come from the
equality of (3.8), which is a result of thin plate Kirchhoff assumption because the slopes 8, and 8, are not
independent in the classical lamination theory both of them are related to the deflection w. According to the
suggestion of Cheng and Reddy (2002), the complete eigenrelation is given by adding (3.8) with two ar-
bitrarily different multipliers respectively to the 4th and 7th equations of (3.19a). To have a definite ex-
pression, we select these two multipliers to be —1/2 and 1/2, and the final complete eigenrelation can then be
expressed as

N.& = LE, (3.22a)
where
Ny = (Lo +43,) (L +143), (3.22b)

and

Q 0 R 1 a
Ll:{RT —J’ Lz:_[T 0}’ g:{b},

3.22¢
J = [—144 —143]’ J, = [—143 Ly ] ( )

4. Mixed formalism

In (2.4), the constitutive laws are written by expressing the resultant forces/moments in terms of mid-
plane strains/curvatures, which is similar to the use of elastic constants Cy, for the elastic solids. In
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applications, sometimes it is convenient by using the compliances S;;, i.e., expressing the mid-plane strains/
curvatures in terms of resultant forces/moments. In this section, mixed expression will be used with mid-
plane strains and moments as basic functions. The mixed formulation has been adopted by various re-
searchers for various applications, e.g., Jones (1974), Reissner (1980) and Zienkiewicz and Taylor (1989). In
order to get a clear relation about these expressions, we re-write (2.4) in the matrix form as

U =[5 5J{%) “

which may lead to the following mixed expression

{jz}:[—;l%T g}{zﬁ;} (4.22)
where

A=A-BD'B, B=BD'' D=D" (4.2b)

The inversion of (4.2a), which will also be used in the following derivation, is now written as

(5)=[& 3 (0= 4 5){Y)

where

(R~

A"=A4"' B =-4'B, D'=D-BA'B. (4.3b)

Because 4, B and D defined in (2.5) are symmetric matrices, ;1, D, A* and D* defined in (4.2b) and (4.3b)
will also be symmetric, whereas B and B* may not be symmetric.

Note that in the above matrix expressions, the symbols 4, B and NN have different representations from
the eigenvector matrices A,, B; defined in (3.18¢) and the fundamental matrix N, defined in (3.22). The
former is the traditional notation used in the community of mechanics of composite materials, while the
latter is the notation generally used in the community of anisotropic elasticity. To let the readers from both
communities see clearly what we express in this paper, we just use the subscripts and italic fonts to dis-
tinguish these symbols.

Similar to the displacement formalism, we re-write the mixed constitutive laws (4.2) in terms of tensor
notation as

N = Zijklgkl + E’ijkleh Kij = _Eklijgkl + 5ijkle17 i,j,k,1=1,2. (4.4)

Note that due to the two times difference for the tensor notation and contracted notation of shear strain
and twist curvature denoted in (3.2), the following rule should be followed

qu,.j — Z,:,- foralliand j, i,j=1,2,6,

qurx HEU lf]#67

Boys < LB, if j=6,

~17q S 2~ 7] ' J (45)

qurs — Dij if la] # 67

qum — %5,] if either i or j = 6,

Dyys <+ 1Dy, if both i and j = 6.
Because the basic functions we use in the mixed constitutive laws are the strains ¢; and moments M;;, the
kinematic relations shown in (3.1), and the equilibrium equations shown in (3.1)4 are better replaced by
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&ij = %(“i-,j +u;), M;; = %(lpz] + lpj,i‘)v (4.6)
Ny =0, Kij- =0, .
where the superscript * denotes the coordinate system (x7,x%) which is related to (x;,x,) by
x| = —x2, X5 = XJ. 4.7

By (4.7), we have 0/0x} = —0/0x, and 0/0x; = 0/0x;. Thus, the expressions in (4.6) for M;; and k;; are
equivalent to

My =~y ,, My =, My = (Y1 —2,)/2,

(4.8)
Ki12 — K2 = 0, Ki2p — Kn1 = 0.

The three equations of (4.8); show that the moments defined in the second equation of (4.6); will auto-
matically satisfy the equilibrium equation

My, = 0. (4.9)

On the other hand, the kinematic relations for the curvatures shown in the second and third equations of
(3.1); and the third equation of (3.1), will lead to

K11 = —Wwi, Kp = —Wn, Ki2 = —W 12, (4-10)

which will then automatically satisfy the two equations of (4.8),, i.e., the second equation of (4.6),. In other
words, we may call the second equation of (4.6); as the kinematic relation for the moments, and the second
equation of (4.6), as the compatibility equation for the curvatures.

Substituting (4.6), into (4.4), the resultant forces and curvatures may be expressed in terms of mid-plane
displacements u; and stress function ; as

N = Ztjkluk,l + Efjkll//k,m Kij = _Eklijuk,l + bijkll//k,l*' (4.11)

With this result, the equilibrium equations and compatibility equations shown in (4.6), may also be ex-
pressed in terms of mid-plane displacements u; and stress function ; as

Aty + By, =0, —Buytteyy + Dy oo = 0. (4.12)
Like the derivation for the displacement formalism, we may now let

w=d'f(z), Y,=dlf(2), z=x1+wo, k=12 (4.13)
Substituting (4.13) into (4.12) with the use of (4.7), we obtain

{Qi+uR;+ R}) + 10T ba, + {Rz + u(Tz — Q) — ﬂzﬁé}aw =0,

{~Rj + u(Qz — Tj) + W Ry}a, + {T — u(Rs + R) + 15 Qp}ay =0,

where

u v
_[a _ [ 4.14b
. {} B {W} (4.140)

and the definition of Q, R and T are the same as those given in (3.7b). Concerning the unsymmetry of B, a
new matrix Ry is defined by

R; = B (4.15)

(4.14a)

With the understanding of the transformation rules given in (3.2) and (4.5), we may write down the ex-
pressions of Q;, Qy,...,Ts, Rs defined in (3.7b) and (4.15) as
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Ay Ay By %Em Dy %516
(2,:1~ = | ~ ~ ; QE = | ~ S ) Qf) = = | = )
Aig Ags B 3 Bes 3D16 7 Dss
(416 A | 1By Bp 1Dy D Boi 1B
RA~: ~ ~ ) RB: i ~ s RD_ | = L= ; B~ | ~ ' ) (416)
L Aes A | 3Bess  Be 1Dss 3 D2 By 3B
[Ags  As | 1B Be 1Dgs 1Dy
T, - Aes A TR EE ) I D
L A2 A2 | 1By Bxn 5Dy Dy
Substituting (4.13) into (4.11), we have
Nip = —pb,f'(z),  No=h,/"(2), (4.17a)
ki = by f'(2), Ko = by f'(2),
where
b, = (R} + uT)a, + (T; — uRp)ay
1
= _p{(Q/{‘f‘ 1R a, + (Rz — uQp)ay },
(4.17b)

b, = —(Q} + uR})a, + (Rp — 1Qp)ay
1
= —;{(RE +uT})a, — (T — uR})ay,}.

Note that the second equalities of (4.17b); and (4.17b), come from the two equations of (4.14a). Observing
the results obtained in (4.17), we introduce one stress function ¢, and one slope function f3; as

$pi=bf2),  B=0//(). (4.18)
With the use of these two functions, the resultant forces and curvatures can be expressed as
]vi = —@io ]Vl = ils
Piz 2= (4.19)
Ki1 = ﬁi,lv Ko = Pis-
By (4.18) and (4.19), the symmetry requirement Ni, = N,; and k|, = k) may lead to
b =0, b= . (4.20)

Similar to the displacement formalism, by superimposing all the associated solutions shown in (4.13) and
(4.18), the general solutions to the basic equations (4.4) and (4.6) can be written in a compact matrix form

as

u, = 2Re{A,f(2)}, ¢,, = 2Re{B,f(2)}, (4.21a)
where

um—{:f,}, ¢m_{(§}’ (4.21b)

Am = [ﬁl 52 53 34]7 Bm - [Bl f)z f)g 64]7 (421C)
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ﬁk - A 3 l~)k = bu 5 k= 1727 374 (421(1)
ay ), bl// k

Like the displacement formalism, (4.17b) can be re-organized into the following eigenrelation

R HE Rt .

where

~ [Q; Ry =~ |R; —Q =
o=l N omeli oWl T-

T, -R;
-R; —Q;

Better than the eigenrelation of the displacement formalism shown in (3.19a), Eq. (4.22a) has exactly the
same form as that of Stroh formalism for two-dimensional problems. Therefore, all the relations originated
from the eigenrelation for the two-dimensional problems can automatically be copied to the present ei-
genrelation of mixed formalism. By using the inverse relation

(4.22b)

ERNDES
-T 0 -1 RT
the eigenrelation (4.22a) can then be written into the following standard eigenrelation as

N,.€ = 1€, (4.242)
where

S !
and

N F'R', N—T'-N, N—RT'R'-Q-N" (4.240)

5. Explicit expressions for the material eigenvectors and fundamental matrix

As shown in the general solution (3.18) or (4.21) and the eigenrelation (3.22) or (4.24), the material
eigenvector matrices (Ay, B, for displacement formalism and A,,, B,, for the mixed formalism) and the
fundamental matrix (N, for displacement formalism and N,, for the mixed formalism) play important roles
in the Stroh-like formalism for the coupled stretching-bending analysis. Like the Stroh formalism for two-
dimensional problems, it would be of much benefit if we can get the explicit expressions of the material
eigenvectors and the fundamental matrix. If one is familiar with the Stroh formalism, one should observe
that the explicit expressions of material eigenvectors for two-dimensional problems are obtained from the
benefit of the stress-based Lekhnitskii formalism (Ting, 1996). Whereas, the explicit expressions of the
fundamental matrices are obtained from definitions same as those given in (4.24a) for the mixed formalism
not those given in (3.22b,c) for the displacement formalism (Ting, 1996). That is why until now no explicit
expressions for the material eigenvectors and fundamental matrices have been obtained in the literature
even the displacement formalism has been presented several years ago.
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To show the benefits of the mixed formalism, the explicit expressions for the material eigenvectors and
fundamental matrices will now be obtained based upon the mixed formalism presented in Section 4.

5.1. Material eigenvectors

To find the explicit expressions of material eigenvectors, we first consider the constitutive laws shown in
(4.3). By using (4.6);, (4.13), (4.18), (4.19) and the relation obtained in (4.20), we get

€11 alf Nll ﬂzbg
&2 ﬂag N22 bg
2¢1, pay + ay Nis —pub}
= " 1), = S(2). (5.1)
M, _/101/ K11 bl{’
M, al K2 12b?
M, (@ — pal)/2 2K 2uby

Substituting (5.1) into (4.3), and expanding its results into six equations, we obtain

a =pibh+qiby,  pah =pbi+ @b}, pal + as = pebh + qeby, (522)
—pd! = —mb+ @bV, A = —hbt + @bV, (a) — pal))2 = —heb + geb?,
where
_ 27 % % % _ px 2 T
P = WAy + A, — pd, q; = Bj +u Bj2+2:qu67 (5.2b)

hj = W} + By —uBi, 8 = Dj 41 Dj +2uDj.

Since both of the three equations of (5.2a); and (5.2a), are not independent each other, by standard
elimination procedure with proper multiplication, addition and subtraction we may obtain

LBt + LY =0, bt — 1Y =0, (5.3a)

where

11=Mp1+%—p67 12=.U6]1+%—%,

g1, H& (3.3b)
Lh=—+4+—+h [y ==—+—== .
3 2'u+2+67 4 2'u+2+g6

Egs. (5.3) show that nontrivial solutions of b% and 5! exist only when

Li(w)la(w) + L (w15 (p) = 0. (54)

By viewing (5.2b) and (5.3b), we know that (5.4) is an 8th order polynomial which should lead to the same
eigenvalues as those obtained from the eigenvalue relation (4.24). Furthermore, after obtaining the
eigenvalues from (5.4), Eq. (5.3) may give us
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N

By = bt A= %=1 if 1, and/or I, # 0; (5.5a)
or,
w1, 11 L Iy .
by = 2A"bY, == if /; and/or /5 # 0. (5.5b)
1 3

With the results of (4.20), (5.5) and (5.2), the explicit expressions for the eigenvectors a and b can then be
written as

P+ Aq —u
. a, (pr + Aq2) /1t - { b, } 1 )
a—= = . , b= = if I, and/or I4 # 0; 5.6a
{3:// } (h1 — Ag1)/n by, A » and/or L # (5.62)
—hy + 28> a
or,
o+ i
a, 2oy + - b, V.
a— { } _ ] e O G { } - if 7, and/or I # 0. (5.6b)
ay (A" h —g1)/u by 1
—)fl]’lz + 2 u

5.2. Fundamental matrix

From the definition given in (4.24), we know that the fundamental matrix N,, of the mixed formalism is a
8 x 8 matrix which is related to the extensional, bending and coupling stiffness matrices. Although it looks
complicated, it is not difficult to get the explicit expression because the definition of the fundamental matrix
given in (4.24) has been purposely arranged to be the same as that of the two-dimensional problems. With
this understanding, by following the steps described in Ting’s book (1996) for Stroh formalism we can find
the explicit expressions of N,,. This benefit for the mixed formalism cannot be applied to the displacement
formalism because the definition given in (3.22) is not perfectly matched with the Stroh formalism for two-
dimensional problems. In Section 7, we will try to find the relation between N,, and N, through the proper
comparison of these two formalisms. With that relation, the explicit expression of N, can be found easily
via N,,.

Followings are the explicit expressions of ﬁi, i =1,2,3, which are the sub-matrices of N,,. Detailed
derivation may be found in (Hsieh and Hwu, 2002b).

Xu X 0 Xy Yu Yo hs Yu
~ 1|Xa 0 0 Xy ~ 1|2 Yo Y3 Yu
N, == ; Ny == ’
Alxy 0 0 Xy AlY; Y Y3 Yu
[ Xa 0 Xgz Xy Yiu Yoo Yau Yuu
-Di 0 0 B,
1l 0o 00 o
N , (5.7a)
Al o 00 0
L Ffz 0 0 271
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where

A= ETzéTz + 2715;%
Xn = 21}532 + FbﬁZp Xy = _(271532 + §T2§’1€2>7 Xig = ZﬁEZz - 2T6E727
X = ZT21~)§2 + 1}1‘21?327 Xoy = ZT1§32 - Zfzgfza
Xa1 = Ele§2 - EszTza Xay = _(271572 + ETIETz)v
Xy = 2(§T65§2 - Esz%), Xz = Zﬁﬁ;z + EngTzv Xay = *2(291615;6 + §’[6§f2)
= Z’{lﬁéi + Z&)E”{% + ZTIZE()E;Z - 31%532 - 2ZT6§725227
Yip = 2T1§§2§22 + 236E3 + Zlezsﬁb - ZYzszﬁzz - 2T2§T2522 - 2T6§T2§;27
Vi3 = Zfsgizﬁfz + Egggl + ZDEZlb;z - ZT6§T15§2 - ZTIEEZBTZ - ETlgnggza (5'7b)
Yy = 2(276§T2536 + Egﬁgé + ZT1E261~)§2 - ZY6§T6532 - Zﬁl};zf);é - ETzﬁTsﬁgz)a
Yo = A},B3 + 43,873 + A}, 43,05, — 43D, — 247,B7,B5,
Yy = 4,B,D}, + BB}, + 4;,B3, Dy, — 4,8}, Dy, — 4;,B3,D;, — B}, B},B5,,
Yo = 241,81, D5 + BB + 4}, By D3y — A1,B1eDs, — 4,83, D3 — BiBigB),
Yy = 4}, D3 + 2B, B},D, — BiiD3, — Bi3D}, — 43, D}, Dy,
Yy = 2(§T2§T6Z~DT2 +ZT15T25;6 + ETlFbi)% - ZleTsﬁzz - Eﬁf)% - ETIET613;2)7
Yu = 4(4}, D3] + 2B}, B} D3 — Bi¢Ds, — B3 Dy — 4}, D3,D5),

in which A*, B* and D" are defined in (4.3b).

6. Reduction to symmetric laminates

In our previous derivation, displacement or mixed formalism, no symmetry condition is required on the
laminates. In practical engineering applications, it is common to design a symmetric laminate whose
coupling stiffnesses B;; are zero. For this kind of composite structures, the in-plane problem and plate
bending problem will be decoupled. Recently, without involving the coupling conditions, I developed a
Stroh-like formalism for the anisotropic plate through the Stroh—Lekhnitskii’s connection (Hwu, in press).
Because that formalism only considers the plate bending problems, to avoid coupling effects the anisotropic
plates should have one plane of elastic symmetry located at the mid-plane of the plate. Therefore, it can
only be applied directly to the symmetric laminates not the general composite laminates with coupling.
Because that formalism has been checked carefully with Lekhnitskii formulation (1968) and applied to
solve many practical problems such as holes/cracks/inclusions (Hsieh and Hwu, 2002a), it should be
suitable to use that formalism as a check of our present formalisms by just reducing our results to the
symmetric laminates.

6.1. Displacement formalism

Substituting B;; = 0 into (3.21), we obtain Q = Rz = Tz = 0. With this result and the definitions of Q,
R and T given in (3.19b), the eigenrelation (3.22) can now be separated into two parts as

[:l;j },I}l{gf —OIH;:} :“{::}’ (6.1)
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HEH!

In the above, (6.1) corresponds to the in-plane problems, while (6.2) corresponds to the plate bending
problems. By careful comparison, we see that (6.1) is identical to that for two-dimensional problems (Ting,
1996), but (6.2) looks different. Substituting (3.21) into (6.2) and performing 4 x 4 matrix inversion and
multiplication carefully (this work may be manipulated with the assist of symbolic computational software
such as Mathematica), we obtain

and

-1
—Rp — 1L —I+1Iy

-Tp+ 11y, -1

Q —5ln  —3Ly
R}, +31 1431,

Ng&y = u&y, & = { :ﬁ }» (6.3a)
where
i 0 1 0 0
—p2 —2p 0 5
Ny = —D +% _2(D16 - DB*?) 0 —D—Z ' (6.3b)
—2(Dis ~2) _4(D66 _g_) 1 2B

In order to check the result (6.3) with that presented in my previous paper for the symmetric laminates
(Hwu, in press), we need to unify the definitions of the eigenvectors. With this consideration, it can easily be
proved that Ny obtained in (6.3b) is identical to that shown in (Hwu, in press). A convenient reference for
the comparison is shown in Tables 1 and 2, which will be discussed in detail in the next section.

Because the eigenvalues and eigenvectors for the symmetric laminates can be separated into two parts,
in-plane problem and plate bending problem, the general solutions shown in (3.18) should also be separated
into these two parts. They are

u=2Re{Af(z)}, ¢ =2Re{B,f(2)},

B=2Re{Af(z)}, W ="2Re(By()}, (6.42)
where
A= [(a“)l (a“)Z]v B, = [(bu)l (bu)2]7
Ap=T[(ag), (ap),], By = [(bg), (bp),], (6.4b)
and
_ Si(z1)
f(z) = {fz(zz) } (6.4c)

From the solutions shown in (6.4) for the in-plane and plate bending problems, we see that they have
exactly the same form as that for the Stroh formalism of two-dimensional problems. Again, the formalism
for the plate bending problem, (6.4a), and (6.4b),, is exactly the same as that presented in (Hwu, in press).
One should note that in (Hwu, in press), the definitions for the slope vectors p and the stress function vector



Table 1

Comparison of general solutions

Stroh formalism for two-
dimensional problem (in-plane
and antiplane coupling)

(Ting, 1996)

Stroh-like formalism for plate
bending problem (Hwu, in press;
Hsieh and Hwu, 2002a)

Displacement formalism
(in-plane and plate bending
coupling)

Mixed formalism (in-plane and
plate bending coupling)

General
solution

u = 2Re{Af(z)}
¢ = 2Re{Bf(2)}

A=[a; a, a;]
B=[b b, bs]

Silz)
f(z) = { fo(=z)
f3(z3)

Zp = X1+ [yX2

o1 =—0ip o=,

U = 2Re{AW (z)}
B = 2Re{Bw (2)}

A:[al 22]
B=[b b]

vo- (Ui}
Zr =X+ Wy
v={fie)

_w
B:{ By}
ow
ax

M, = 7ST\|’,s: M, = 7nTl|’.n
My = (", +n"y,)/2

Qn = 7(ST\|’,ns - nT\|1,SS)/2
O =(s"y,, —n",,)/2

V;l = 7nT‘*|!,s:7 Vl = ST\Il,rm

u; = 2RC{Adf(Z)}
by = 2Re{B,f(2)}

i) o 2]

A;=[a; a, a; ay]
B,=[b b, by by]

a b
a: u 7b: u
{arf} {bﬁ}

Si(z1)
© =170
fa(za

Zp = X1 + X2

Bi=-wi, fy=-w,
Ny = *(f)i,zv Nip = ¢i.1

My = *l//[.z - %)‘ill//k,kv

My = 'ﬁm - %;Lizwk.k

0= *%l//k,/m 0, = %l//k,kl
=Y, =V,

u, = 2Re{A,f(2)}
¢,, = 2Re{B,f(2)}

A, =[a a a a]
B,=[b b b b
s={a)oo={0}
Silz1)
e =1 1)
Ja(zs)

Zp = X1+ 4X2

Bi=-wi, By=-w,
Ny = *(z’i,za Nip = ¢i,1

My = *‘//[,2 - %}“ill//k_kv

My = l//f.l - %;LiZ‘pk.k

0= *%‘//k,kzv O = %l//k,kl
N=—Ym, =1y

SOLE-I9E (£00T) OF S2MIMUS puv SPIOS [0 [PUINOL [DUODUIIU] | RIE D)

669¢



Table 2

Comparison of eigenrelations

Stroh formalism for two-
dimensional problem
(in-plane and antiplane
coupling) (Ting, 1996)

Stroh-like formalism for
plate bending problem
(Hwu, in press)

Displacement formalism (in-plane and
plate bending coupling)

Mixed formalism (in-plane and plate
bending coupling)

Eigen
relation

NE = g

_ NN
=% )

N =-T'R", N, =T"!
N; =RT'R"-Q
Qik = Cilkls Rik = Cilk?.s

Ty = Ciorz
Cjju: elastic constants

NE = pg
N N
N= 1 N

N, =-T'R", N, =T""

N; =RT 'R" - Q

* L p* ]
Q= ?22 _liDze
" " ,
_7§D26 ZDG() |
[_ 1 "
R= iiDzﬁ 11)12
. |
L ZDGG _EDm_
[ Lp=* —1p* T
366 2716
T= .
« *
L —2Di6 Dy,

Ni€ = g 4
Ny = (La+3d2) " (L +3d1),

[ 0 R I
Li= 1% —I]’Lz:_[T 0]’

[—Ly —Ls I Iy
J = ., ), = 3
! | L4 | £ ] ? [

Q:_QA ()Bj|7 R=|:RA RB:|!

1Qs Qo R; Rp
_|Ta Tp
v=[n 1)

[4n A _|Bu B
Q= 416 Aes ]’ Q= Bis Bes ]’

Q@ =1p, DGJ

RA=[A16 A12:|’ R3=[B”’ BIZ:|7

A55 A26 Bﬁﬁ BZﬁ
[Dis D
R, =
P | Des Dzs]

133 _134

|

6_ [QA’ RB} R-= [RA’ 7QB:|

= | pT » R=1 1 T |

Rl -T, ! R}

T=| L R
_RB _Q[)

o= [ Bn] o= [Br 1B
Ais Aes Bsi 3Bes
Dy 1Dy

Q; = g

P _%Dls 1 Des

R; = Em Eu} R; = 51:916 ?12
Ldes A 1Bss Be

00LE

SOLE-IS9E (£00Z) OF $24n1N1S pup SPIOS 0 [DUIROL [DUOHDUIIU] | NUE D



Dj;: inverse bending
stiffness D!

| Des
o= [Dm

Az T, — Bes B
An] By By |’

Dy
Dy

Aj;: extensional stiffness
By;: coupling stiffness
D;;: bending stiffness
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\ and their associated eigenvectors Ay and By are slight different from the present ones. The definitions
given in (Hwu, in press) can also be found in Tables 1 and 2.

6.2. Mixed formalism

Substituting B; =0 into (4.2), we obtain A=A, B=0, D= D 1, which will then lead to
Q; = Rz = R; =T; = 0 by (4.16). With this result and the definitions of Q Rand T given in (4.22b), the
eigenrelation (4.24) can now be separated into two parts as

~T,'R] T,' a, a,
b ("M (0 (6.5)
Q'R -Q;'

|R,T,'R} -Q, -R,T,'
ay ay
TO-! T-! { }:,u{ } (6.6)
__RDQ[) R[)—FTD RDQD bw blp

Similar to the displacement formalism, eigenrelations (6.5) and (6.6) correspond to the in-plane and plate
bending problems respectively. By simple inversion and multiplication, it can easily be proved that (6.1) and
(6.5) are equivalent. To prove that (6.6) is identical to (6.2), we firstly note that

a, = bﬁ, b,/, = ag, (67)

which can be observed from (3.5), (3.15), (4.13) and (4.18). With this understanding, through the use of
(4.16) we can prove that (6.6) is identical to (6.2). Actually, (6.6) has exactly the same form as that presented
in (Hwu, in press), and hence the proof of its equivalence is more direct and simple than (6.2).

Similar to the displacement formalism, the general solutions shown in (4.21) can also be separated into
two parts, which are exactly the same as those shown in (6.4).

Because the explicit expressions for the eigenvectors have been obtained in the mixed formalism, in the
following we like to check our results by using the case of symmetric laminates. Substltutmg B;; =0 into
(4.3b), we have A" =A4",B =0, D" = D. If we use 4;; to denote the components of A™', (5.2b) gives us

and

g =h; =0, p;= 1’4, + 4, —udy, g =D+ ’Dp+2uDj, (6.8)
which will then lead to, by the use of (5.3b),
L=1;=0. (6.9)

With this result, the characteristic equation for the eigenvalues shown in (5.4) becomes
() la(u) = 0. (6.10)

In the above, /(1) = 0 will provide the eigenvalues for the in-plane problems, whereas /4(u) =0 will
provide the eigenvalues for the plate bending problems. The explicit expressions for the eigenvectors can
therefore be separated into two parts. One is from (5.6a), and the other is from (5.6b). They are

P —H :
a, = , b, = for in-plane problems, 6.11a
{Pz/ u} { 1 } panep (6.11a)
a, = { _‘?/M }, b, = {,th} for plate bending problems, (6.11b)
2

which are identical to those shown in Ting (1996) for the in-plane problems and in Hwu (in press) for the
plate bending problems.
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Substituting A"=A4"',B =0, D' = D into (5.7) for the symmetric laminates, we can also prove that
the two separate parts of the explicit expressions of the fundamental matrices corresponding to the in-plane
and bending problems are exactly the same as those presented in the literature (Ting, 1996; Hwu, in press).

7. Comparison and discussion

In Ting’s book (1996) and several research works, we observe that through the use of the eigenrelation
many useful identities relating the material properties to the eigenmodes of stress functions and displace-
ments can be established. With the assist of these identities, many problems that are left with unsolved
linear algebraic system can be solved explicitly. Moreover, many complex variable form solutions may be
transformed to real form solutions. With this understanding, in this section the comparison will be em-
phasized upon the resemblance of the general solutions and their associated eigenrelations, because the
more alike to the Stroh formalism the more possible we can benefit from the experience of two-dimensional
problems.

Table 1 shows the comparison between the general solutions presented by the Stroh formalism for two-
dimensional problem (Ting, 1996), Stroh-like formalism for plate bending problem (Hwu, in press), and
displacement formalism and mixed formalism presented in this paper. From this Table, we see that the
Stroh-like formalism for the plate bending problem is really very alike to the Stroh formalism for two-
dimensional problem. The slight difference comes from: (1) the appearance of minus sign and the order of
(y,x) instead of (x, y) in the definitions of the stress function vector { and slope vector B; (2) the eigenvector
matrix A corresponds to the stress function vector instead of the slope vector, and eigenvector matrix B
corresponds to the slope vector instead of the stress function vector. As to the displacement formalism, its
solution form is exactly the same as that of Stroh formalism for two-dimensional problem. While for the
mixed formalism, the in-plane part is still exactly the same as Stroh formalism for two-dimensional
problem, but its plate bending part conforms to the Stroh-like formalism with A corresponding to the stress
function and B corresponding to the slope. Note that in mixed formalism, the sign and the order of the
definitions of s and p have been returned to the normal situation.

Purely from the observation shown in Table 1, one may conclude that displacement formalism should be
the one most alike to the Stroh formalism for two-dimensional problem. However, Table 2 presenting the
eigenrelation shows the opposite. From Table 2, we see that the eigenrelation of Stroh-like formalism for
plate bending problem as well as that of mixed formalism have exactly the same form as that for two-
dimensional problem. However, the eigenrelation for displacement formalism is different by the addition of
the matrices J; and J,. Because the matrices Nj, N, and N3 play an important role in the Stroh formalism
for two-dimensional problems, they are usually called fundamental matrices. Therefore, although the
displacement formalism has exactly the same form in the general solution, sometimes it may not be a good
choice for the lamination theory due to the lack resemblance of its eigenrelation. Thus, from the viewpoint
of the eigenrelation, the mixed formalism is a better choice than the displacement formalism for solving the
practical lamination problems. However, because the generalized displacement vector u,, and the gener-
alized stress function vector ¢,, in mixed formalism have their mix nature, it may become inconvenient
when one deals with the pure stress or displacement boundary valued problems. On the other hand, if a
mixed boundary valued problem (prescribed in-plane displacements and out-of-plane bending moments/
effective transverse shear forces, or prescribed in-plane forces and out-of-plane deflections/slopes) is con-
sidered, mixed formalism may be a good choice.

From the above discussion, we know that both the displacement and mixed formalisms are not perfectly
alike to the Stroh formalism for two-dimensional problems. One is alike in general solution, the other is
alike in eigenrelation. To combine the merits from both formalisms, we may use the general solutions
formed by the displacement formalism and when there is a need to count on the eigenrelation we may use
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the eigenrelation from the mixed formalism. From this viewpoint, we need to know the relation between the
fundamental matrices N; and N,,. By (6.7), we get the following relation

a, I 0 0 07 (a,

g a a, 00 0 I|]a {11 IZ]{a}

fry - = = = :I7 71

S {b} b, 001 0], L I,] b S (7.1)
b, 01 0 0] (b

in which I;, I, and I, are defined through the equalities. Substituting (7.1) into (4.24) and comparing its
results with (3.22), we obtain

N, = LN, I, (7.2)

or in the sub-matrix form,

N, = [i; gl%], (7.3a)
where

N; = LN + LN, L + LN:I, + LNTI,

N, = [N, L, + [ N,I; + LN:;L + LNTT,, (7.3b)

N3 = Izﬁ]ll + Izﬁzlz —|— Ilﬁ3ll + I]N}FIZ

8. Conclusions

Two Stroh-like complex variable formalisms for the coupled stretching-bending analysis of composite
laminates are presented in this paper. One is displacement formalism, and the other is mixed formalism.
The former was introduced previously by the other researchers and re-derived in this paper by a more
Stroh-like way, while the latter is established here to compensate the displacement formalism. In these two
Stroh-like formalisms, the general solutions for the basic equations of lamination theory and their asso-
ciated eigenrelations are all obtained in complex matrix form. From the results and discussions presented in
this paper, we see that both the displacement and mixed formalisms are not perfectly alike to the Stroh
formalism for two-dimensional problems. The displacement formalism is alike in general solution, whereas
the mixed formalism is alike in eigenrelation. To combine the merits from both formalisms, we may use the
general solutions formed by the displacement formalism and when there is a need to count on the eigen-
relation we may use the eigenrelation from the mixed formalism.

By using the presently developed mixed formalism, the explicit expressions for the fundamental matrix
and eigenvectors are obtained first time for the most general composite laminates with coupling. For both
formalisms, almost all the relations have been purposely arranged to have the same form as those of the
Stroh formalism for two-dimensional formalism. Due to the resemblance, almost all the formulae and
mathematical techniques developed for two-dimensional problems can be transferred to the problems of
composite laminates with in-plane and plate bending coupling. By simple analogy, many problems that
cannot be solved previously, now have the possibility to be solved analytically.
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