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Abstract

Due to the two-dimensional nature of thin plates, the lamination theory considering the composite laminates with in-

plane and plate bending problems coupling each other is treated in this paper by using complex variable formulation.

By following the steps of Stroh formalism for two-dimensional linear anisotropic elasticity, a displacement complex

variable formalism developed by the other researchers was introduced and re-derived in a different but more Stroh-like

way. In addition, a brand-new mixed formalism (mixed use of displacements and stresses as basic functions) is es-

tablished to compensate the displacement formalism. In order to transfer all the related formulae and mathematical

techniques of the Stroh formalism to these two formalisms, the general solutions for the basic equations of lamination

theory and their associated eigenrelations have been purposely arranged in the form of Stroh formalism. Moreover, by

using the presently developed mixed formalism, the explicit expressions for the fundamental matrix and eigenvectors are

obtained first time for the most general composite laminates. Furthermore, letting the coupling stiffness vanish, the

formalism has been reduced to the case of symmetric laminates and checked by a recently developed Stroh-like for-

malism for the plate bending problems. The comparison between Stroh formalism for two-dimensional problem, Stroh-

like formalism for plate bending problem, displacement formalism and mixed formalism is then made at the end of this

paper, and through their connection some useful relations are obtained.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Although the classical lamination theory was developed long time ago (Jones, 1974), it is not easy to

apply this theory to find an analytical solution for the problem with curvilinear boundaries, especially when

the laminates are composed of the laminae that will make the in-plane and plate bending problems couple
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each other. For example, the problems of composite laminates with holes/cracks/inclusions, which have

been discussed and solved vastly in two-dimensional problems, are still difficult to be solved when the

laminates are subjected to out-of-plane bending moments. Because this kind of problems was solved by the

complex variable formalism in two-dimensional deformation, it is hoped that similar formalism can be
developed for the classical lamination theory.

For two-dimensional linear anisotropic elasticity, there are two major complex variable formalisms in

the literature. One is the Lekhnitskii formalism (Lekhnitskii, 1963, 1968) which starts with the equili-

brated stress functions followed by constitutive laws, strain–displacement relation and compatibility

equations; the other is the Stroh formalism (Stroh, 1958, 1962) which starts with the compatible dis-

placements followed by strain–displacement relation, constitutive laws and equilibrium equations. Due to

the special feature that Stroh formalism possesses an eigenrelation which relates the eigenmodes of stress

functions and displacements to the material properties, recently Stroh formalism becomes more attractive
than Lekhnitskii formalism, especially when the book (Ting, 1996) emphasized on Stroh formalism was

published. Due to this reason, the efforts of this paper will be focused upon the establishment of a

counterpart of Stroh formalism for the lamination theory. If the formulae developed for the lamination

theory can be purposely arranged into the form of Stroh formalism for two-dimensional linear anisotropic

elasticity, almost all the mathematical techniques developed for two-dimensional problems can be

transferred to the coupled stretching–bending problems. Thus, by simple analogy, many unsolved lami-

nation problems can now be solved if their corresponding two-dimensional problems have been solved

successfully.
Tracing the literature, we found that Lekhnitskii has ever developed a complex variable formalism for

the plate bending problems (Lekhnitskii, 1938), and used his formalism to solve the problems of ortho-

tropic plates containing circular holes or rigid inclusions (Lekhnitskii, 1968). After that, very few contri-

butions can be found in the literature for the improvement of complex variable formulation in plate

bending problems, although some related works have been touched such as Qin et al. (1991). Recently,

through the understanding of the connection between Stroh formalism and Lekhnitskii formalism for the

two-dimensional problems, I (Hwu, in press) developed a Stroh-like formalism for the bending theory of

anisotropic plates, which can be applied directly to the symmetric laminates. By this newly developed
formalism, we successfully obtained the analytical solutions for the problem of anisotropic plates with

holes/cracks/inclusions subjected to out-of-plane bending moments (Hsieh and Hwu, 2002a). However, it is

difficult to apply the same approach to the unsymmetric laminates with in-plane and plate bending cou-

pling. Instead of using the advantages of Stroh–Lekhnitskii�s connection, a displacement-based derivation

has been introduced by Lu and Mahrenholtz (1994) and modified by Cheng and Reddy (2002). In addition,

some researchers devoted their efforts to the development and application of the complex variable method

on the laminates with bending extension coupling such as (Becker, 1991; Zakharov, 1992). Due to the

complexity, the resemblance between the Stroh formalism and the displacement formalism as well as the
published complex variable methods is not perfect enough to employ most of the key features of Stroh

formalism. Thus, to get the solutions for the bending extension coupling problems one cannot directly

duplicate from their corresponding two-dimensional counterparts, detailed derivations instead are still

needed such as a number of problems solved by Becker and Zakharov (Becker, 1992, 1993, 1995; Zakharov

and Becker, 2000; Engels and Becker, 2002).

By comparing the formalisms developed by Hwu (in press), Lu and Mahrenholtz (1994) and Cheng and

Reddy (2002), we found there may exist an alternative formalism that is more alike to the Stroh formalism

for two-dimensional problems. In this paper, we call it mixed formalism because in our derivation the basic
functions are not pure displacements or pure stresses but in-plane displacements plus plate bending mo-

ments. The associated eigenrelation of the mixed formalism shows that it is really more alike to the Stroh

formalism. Moreover, by the mixed formalism, the explicit expressions of the material eigenvectors have
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been obtained in this paper. In addition, the explicit expressions of the fundamental elasticity matrices of

Stroh-like formalism for symmetric/unsymmetric laminates have also been obtained through the use of

mixed formalism developed in this paper (Hsieh and Hwu, 2002b).

To have a deep insight of the complex variable formalism for lamination theory, both the displacement
and mixed formalisms are presented in this paper. By comparing these two formalisms with the Stroh

formalism for two-dimensional problems (Ting, 1996) and the Stroh-like formalism for plate bending

problems (Hwu, in press), we find that both of them are not perfectly match with the Stroh formalism.

Combining use of these two formalisms may be a good approach for solving practical lamination problems.

Thus, relations between these two formalisms are also provided in this paper.

2. Lamination theory

To describe the overall properties and mechanical behavior of a laminate, the most popular way is the

classical lamination theory (Jones, 1974). According to the observation of actual mechanical behavior of
laminates, Kirchhoff�s assumptions are usually made in this theory. Based upon the Kirchhoff�s assump-

tions, the displacement fields, the strain–displacement relations, the constitutive laws and the equilibrium

equations can be written as follows.

2.1. Displacement fields

uðx; y; zÞ ¼ u0ðx; yÞ � z
owðx; yÞ

ox
;

vðx; y; zÞ ¼ v0ðx; yÞ � z
owðx; yÞ

oy
;

wðx; y; zÞ ¼ w0ðx; yÞ;

ð2:1Þ

where u, v and w are the displacements in x, y and z directions, and u0, v0 and w0 are the middle surface

displacements.

2.2. Strain–displacement relations

ex ¼ e0x þ zjx; ey ¼ e0y þ zjy ; cxy ¼ c0xy þ zjxy ; ð2:2Þ

where

e0x ¼
ou0
ox

; e0y ¼
ov0
oy

; c0xy ¼
ou0
oy

þ ov0
ox

;

jx ¼ � o2w
ox2

; jy ¼ � o2w
oy2

; jxy ¼ �2
o2w
oxoy

;

ð2:3Þ

where (ex; ey ; cxy) are the strains, (e
0
x ; e

0
y ; c

0
xy) are the mid-plane strains and (jx; jy ; jxy) are the plate curvatures.
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2.3. Constitutive laws

Nx

Ny

Nxy

Mx

My

Mxy

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66

26666664

37777775
e0x
e0y
c0xy
jx

jy

jxy

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
; ð2:4Þ

where Nx, Ny , Nxy are the resultant forces and Mx, My , Mxy are the resultant moments. Aij, Bij and Dij are,

respectively, the extensional, coupling and bending stiffnesses, and are determined by

Aij ¼
Xn

k¼1

ðQijÞkðhk � hk�1Þ; Bij ¼
1

2

Xn

k¼1

ðQijÞkðh2k � h2k�1Þ; Dij ¼
1

3

Xn

k¼1

ðQijÞkðh3k � h3k�1Þ; ð2:5Þ

where hk and hk�1 denotes, respectively, the location of the bottom and top surface of the kth lamina

(Fig. 1). ðQijÞk is the transformed stiffness matrix of the kth lamina.

2.4. Equilibrium equations

oNx

ox
þ oNyx

oy
¼ 0;

oNxy

ox
þ oNy

oy
¼ 0; ð2:6aÞ

Fig. 1. Laminate geometry, resultant forces and moments.
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o2Mx

ox2
þ 2

o2Mxy

oxoy
þ o2My

oy2
þ q ¼ 0; ð2:6bÞ

where q is the lateral distributed load applied on the laminates. Note that Eq. (2.6b) represents the forces

equilibrium in the thickness direction, which is usually written in terms of the transverse forces Qx and Qy as

oQx

ox
þ oQy

oy
þ q ¼ 0: ð2:7Þ

The moment equilibrium in the x- and y-directions shows that the transverse shear forces are related to the
bending moments by

Qx ¼
oMx

ox
þ oMxy

oy
; Qy ¼

oMxy

ox
þ oMy

oy
: ð2:8Þ

Substituting (2.8) into (2.7), we get Eq. (2.6b).

2.5. Governing equations

To get governing equations satisfying all the basic equations, we first use (2.3) to express the mid-plane

strains e0x , e0y , c0xy and curvatures jx, jy , jxy in terms of the mid-plane displacements u0, v0 and w, then use

(2.4) to express the resultant forces Nx, Ny , Nxy and moments Mx, My , Mxy in terms of the mid-plane dis-

placements. After these direct substitutions, the three equilibrium equations (2.6) can now be written in
terms of three unknown displacement functions u0, v0 and w as

A11

o2u0
ox2

þ 2A16

o2u0
oxoy

þ A66

o2u0
oy2

þ A16

o2v0
ox2

þ ðA12 þ A66Þ
o2v0
oxoy

þ A26

o2v0
oy2

� B11

o3w
ox3

� 3B16

o3w
ox2oy

� ðB12 þ 2B66Þ
o3w
oxo2y

� B26

o3w
oy3

¼ 0; ð2:9aÞ

A16

o2u0
ox2

þ ðA12 þ A66Þ
o2u0
oxoy

þ A26

o2u0
oy2

þ A66

o2v0
ox2

þ 2A26

o2v0
oxoy

þ A22

o2v0
oy2

� B16

o3w
ox3

� ðB12 þ 2B66Þ
o3w
ox2oy

� 3B26

o3w
oxoy2

� B22

o3w
oy3

¼ 0; ð2:9bÞ

D11

o4w
ox4

þ 4D16

o4w
ox3oy

þ 2ðD12 þ 2D66Þ
o4w

ox2oy2
þ 4D26

o4w
oxoy3

þ D22

o4w
oy4

� B11

o3u0
ox3

� 3B16

o3u0
ox2oy

� ðB12 þ 2B66Þ
o3u0
oxoy2

� B26

o3u0
oy3

� B16

o3v0
ox3

� ðB12 þ 2B66Þ
o3v0
ox2oy

� 3B26

o3v0
oxoy2

� B22

o3v0
oy3

¼ q; ð2:9cÞ

which are the governing equations for the laminated plates.

The governing equations shown in (2.9a,b,c) are system of partial differential equations with three un-

known functions u0, v0 and w. Due to the mathematical complexity of these equations, it is not easy to get

solutions by solving these partial differential equations. In practical engineering applications, it is common

to have a symmetric laminate or to construct a balanced laminate. In those cases the coupling stiffness
components like Bij and/or A16, A26 and/or D16, D26 will be zero, and Eqs. (2.9a,b,c) will be drastically

simplified.
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2.6. Boundary conditions

For the general cases of laminated plates, the in-plane and bending problems will couple each other.

Hence, every boundary of the plates should be described by four prescribed values. Two of them corres-
pond to the in-plane problems and the other two correspond to the bending problems. Generally, they may

be expressed as

un ¼ ûun or Nn ¼ bNNn or Nn ¼ knun;

ut ¼ ûut or Nnt ¼ bNNnt or Nnt ¼ ktut;

w;n ¼ ŵw;n or Mn ¼ bMMn or Mn ¼ kmw;n;

w ¼ ŵw or Vn ¼ bVVn or Vn ¼ kvw;

ð2:10Þ

where Vn is the well known Kirchhoff force of classical plate theory, or called effective shear force defined by

Vn ¼ Qn þ
oMnt

ot
: ð2:11Þ

The subscripts n and t denote, respectively, the directions normal and tangent to the boundary. The overhat

denotes the prescribed value. The values in the n–t coordinate can be calculated from the values in the x–y
coordinate according to the transformation laws.

3. Displacement formalism

The governing equations (2.9a,b,c) involve both in-plane and plate bending problems, i.e., these two
problems are coupled each other if the coupling stiffnesses Bij are not equal to zero. Due to the mathe-

matical complexity, very few systematic approaches can be found in the literature. Because of the two-

dimensional nature of the plate bending problems, it is hoped that the complex variable method which is

powerful and elegant for the two-dimensional problems can also be applied to the plate bending problems.

For the two-dimensional linear anisotropic elasticity, there are two important books published in the lite-

rature. One is by Lekhnitskii (1963), and the other is by Ting (1996). The former concerns a stress for-

malism which is generally called Lekhnitskii formalism, whereas the latter concerns a displacement

formalism which is generally called Stroh formalism (Stroh, 1958). In this section, we will use the mid-plane
displacements and slopes as our basic functions, which is therefore called displacement formalism. Actually,

this approach has been introduced by Lu and Mahrenholtz (1994) and modified by Cheng and Reddy

(2002). In addition to the displacement formalism, by using mid-plane displacements and bending moments

as basic functions, a brand-new formalism called the mixed formalism will be introduced in the next section.

Although several different kinds of displacement formalisms have been developed in the literature, some

fail in their eigenrelation and some fail in their complexity. To have a correct and clear formalism, in this

section we re-derive the displacement formalism in a more Stroh-like approach. For the convenience of

later derivation, we will firstly rewrite all the basic equations (2.1)–(2.8) in terms of tensor notation as
follows:

Ui ¼ ui þ zbi; b1 ¼ �w;1; b2 ¼ �w;2;

nij ¼ eij þ zjij ¼ 1
2
ðUi;j þ Uj;iÞ; eij ¼ 1

2
ðui;j þ uj;iÞ; jij ¼ 1

2
ðbi;j þ bj;iÞ;

Nij ¼ Aijklekl þ Bijkljkl; Mij ¼ Bijklekl þ Dijkljkl;

Nij;j ¼ 0; Mij;ij þ q ¼ 0; Qi ¼ Mij;j; i; j; k; l ¼ 1; 2:

ð3:1Þ
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Note that in the above tensor notation, we have made a slight change for some symbols and employed the

following conventional replacements,

x $ 1; y $ 2; 11 $ 1; 22 $ 2; 12 or 21 $ 6; ð3:2aÞ
for example,

u $ U1; v $ U2; u0 $ u1; v0 $ u2;

ex $ n11; cxy $ 2n12; e0x $ e11; c0xy $ 2e12; jx $ j11; jxy $ 2j12;

Ny $ N22; Mxy $ M12; Qx $ Q1;

A1121 $ A16; B2211 $ B21; D1212 $ D66; . . . ; etc:

ð3:2bÞ

It should be noted that the replacements of shear strain cxy and curvature jxy are not only symbol change

but also two times difference, which is the same as the conventional contracted notation (Sokolkoff, 1956).

Substituting the strains/curvatures and displacements/slopes relations into the constitutive laws, i.e.,

substituting (3.1)2 into (3.1)3, the resultant forces and moments may be expressed in terms of mid-plane
displacements ui and slopes bi as

Nij ¼ Aijkluk;l þ Bijklbk;l; Mij ¼ Bijkluk;l þ Dijklbk;l: ð3:3Þ

By employing the results of (3.3) to the equilibrium equations (3.1)4, the governing equations may also be

expressed in terms of the mid-plane displacements ui and slopes bi as

Aijkluk;lj þ Bijklbk;lj ¼ 0; Bijkluk;lij þ Dijklbk;lij þ q ¼ 0: ð3:4Þ

Consider the homogeneous case that no lateral load is applied on the laminates, i.e., q ¼ 0. Because
the mid-plane displacements ui and slopes bi depend only on two variables, x1 and x2, and (3.4) are homo-

geneous partial differential equations, we may let

uk ¼ au
kf ðzÞ; bk ¼ ab

k f ðzÞ; z ¼ x1 þ lx2; k ¼ 1; 2: ð3:5Þ
Differentiation of (3.5) with respect to xl gives

uk;l ¼ au
kðdl1 þ ldl2Þf 0ðzÞ; bk;l ¼ ab

k ðdl1 þ ldl2Þf 0ðzÞ; ð3:6Þ

in which the prime (0) denotes differentiation with respect to the argument z and dij is Kronecker delta.

Further differentiating with respect to xj and xi, we find that (3.4) with q ¼ 0 will be satisfied if

fQA þ lðRA þ RT
AÞ þ l2TAgau þ fQB þ lðRB þ RT

BÞ þ l2TBgab ¼ 0;
l
TfQB þ lðRB þ RT

BÞ þ l2TBgau þ l
TfQD þ lðRD þ RT
DÞ þ l2TDgab ¼ 0;

ð3:7aÞ

where

QA ¼ Ai1k1; QB ¼ Bi1k1; QD ¼ Di1k1;

RA ¼ Ai1k2; RB ¼ Bi1k2; RD ¼ Di1k2;

TA ¼ Ai2k2; TB ¼ Bi2k2; TD ¼ Di2k2;

au ¼
au
1

au
2

( )
; ab ¼

ab
1

ab
2

( )
; l
 ¼

1

l

( )
:

ð3:7bÞ

From the second and third equations of (3.1)1 and the assumption of the slope bk given in the second

equation of (3.5), we get

ab
2 ¼ lab

1 : ð3:8Þ
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Eqs. (3.7) and (3.8) constitute four equations with four unknowns au
1, a

u
2, a

b
1, a

b
2. Thus, the problem is solved

in principle. Substituting (3.6) into (3.3), we have

Ni1 ¼ �lbuf 0ðzÞ; Ni2 ¼ buf 0ðzÞ;
Mi1 ¼ �ld
f 0ðzÞ; Mi2 ¼ df 0ðzÞ;

ð3:9aÞ

where

bu ¼ ðRT
A þ lTAÞau þ ðRT

B þ lTBÞab ¼ � 1

l
fðQA þ lRAÞau þ ðQB þ lRBÞabg;

d ¼ ðRT
B þ lTBÞau þ ðRT

D þ lTDÞab;

d
 ¼ � 1

l
fðQB þ lRBÞau þ ðQD þ lRDÞabg:

ð3:9bÞ

Note that the second equality of (3.9b)1 comes from (3.7a)1. Using the relation for the bending moments

and transverse shear forces given in the third equation of (3.1)4, and the definition for the effective

transverse shear force given in (2.11), and the results for the bending moments given in (3.9a)2, we obtain

Qi ¼ lðd� d
Þf 00ðzÞ;
V1 ¼ liT1 ð2d� d


Þf 00ðzÞ; V2 ¼ liT2 ðd� 2d
Þf 00ðzÞ;
ð3:10aÞ

where

i1 ¼
1

0

� �
; i2 ¼

0

1

� �
: ð3:10bÞ

With the definitions of d and d
 given in (3.9b), the second equation of (3.7a) leads to

l
Tðd� d
Þ ¼ 0: ð3:11Þ
Substituting (3.9a)2 into the symmetry condition of the twist moments, i.e., M12 ¼ M21, we have

d1 ¼ �ld

2 : ð3:12Þ

Combining (3.11) and (3.12), we may express d
 in terms of d, or vice versa. Through their relation, we now

introduce a new vector bb as

bb ¼ dþ b0i1 ¼ d
 þ
b0
l
i2; ð3:13aÞ

where

b0 ¼ 1
2
l
Tbb ¼ 1

2
ðbb

1 þ lbb
2Þ ¼ d1 þ ld2: ð3:13bÞ

By the relation given in (3.13), the expressions for the bending moments and transverse shear forces ob-

tained in (3.9a)2 and (3.10a) can now be written as

Mi1 ¼ ð�lbb þ b0i2Þf 0ðzÞ; Mi2 ¼ ðbb � b0i1Þf 0ðzÞ;

Qi ¼ b0
�l

1

� �
f 00ðzÞ; Vi ¼

�l2bb
2

bb
1

( )
f 00ðzÞ:

ð3:14Þ

Observing the results obtained in (3.9a) and (3.14), we introduce two stress functions

/i ¼ bu
i f ðzÞ; wi ¼ bb

i f ðzÞ: ð3:15Þ
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With the use of these two stress functions, the moments, transverse shear forces and effective transverse

shear forces can be expressed as

Ni1 ¼ �/i;2; Ni2 ¼ /i;1;

Mi1 ¼ �wi;2 � 1
2
ki1wk;k; Mi2 ¼ wi;1 � 1

2
ki2wk;k;

Q1 ¼ �1
2
wk;k2; Q2 ¼ 1

2
wk;k1;

V1 ¼ �w2;22; V2 ¼ w1;11;

ð3:16Þ

where kij is the permutation tensor defined as

k11 ¼ k22 ¼ 0; k12 ¼ �k21 ¼ 1: ð3:17Þ
Up to now, the formalism is almost complete because the displacements, slopes, moments, and trans-

verse shear forces have all been expressed elegantly in (3.5), (3.15) and (3.16). The eigenvalues l and the

displacement eigenvectors au, ab can be obtained from (3.7a) and (3.8), and the stress function eigenvectors

bu, bb can be obtained from (3.9b) and (3.13). From (3.7) and (3.8), the determination of the eigenvalues l
will lead to an equation of 8th order polynomial, which can be proved to have eight roots with four pairs of

complex conjugates (Cheng and Reddy, 2002). By arranging the complex eigenvalues whose imaginary

parts are positive to be the first four eigenvalues, and superimposing all their corresponding solutions, the

solutions shown in (3.5) and (3.15) may now be written in a compact matrix form as

ud ¼ 2RefAdfðzÞg; /d ¼ 2RefBdfðzÞg; ð3:18aÞ
where

ud ¼
u

b

� �
; /d ¼ /

w

� �
; ð3:18bÞ

Ad ¼ a1 a2 a3 a4½ �; Bd ¼ b1 b2 b3 b4½ �;

fðzÞ ¼

f1ðz1Þ
f2ðz2Þ
f3ðz3Þ
f4ðz4Þ

8>>>><>>>>:

9>>>>=>>>>;; zk ¼ x1 þ lkx2; k ¼ 1; 2; 3; 4;
ð3:18cÞ

and

u ¼
u1
u2

� �
; b ¼

b1

b2

� �
; / ¼

/1

/2

� �
; w ¼

w1

w2

� �
;

ak ¼
au

ab

� �
k

; bk ¼
bu

bb

� �
k

; k ¼ 1; 2; 3; 4:

ð3:18dÞ

In order to establish an eigenrelation like the Stroh formalism for two-dimensional problems, we re-cast

(3.9b)1 and (3.13a) with the assist of (3.9b)2;3 into

Q � 1
2
I43

RT �Iþ 1
2
I33

� �
a

b

� �
¼ l

�R �Iþ 1
2
I44

�T � 1
2
I34

� �
a

b

� �
; ð3:19aÞ

where

Q ¼ QA QB

QB QD

� �
; R ¼ RA RB

RB RD

� �
; T ¼ TA TB

TB TD

� �
; ð3:19bÞ
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a ¼ au
ab

� �
; b ¼ bu

bb

� �
: ð3:19cÞ

In the above, I denotes the identity matrix, and Imn stands for a matrix with all zero components except the

mn component, for example,

I34 ¼

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

2664
3775; I44 ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

2664
3775; . . . ; etc: ð3:20Þ

In order to see more clearly the eigenrelation shown in (3.19a), we now write down the expressions of

QA;QB; . . . ;TD defined in (3.7b) as

QA ¼
A11 A16

A16 A66

� �
; QB ¼

B11 B16

B16 B66

� �
; QD ¼

D11 D16

D16 D66

� �
;

RA ¼
A16 A12

A66 A26

� �
; RB ¼

B16 B12

B66 B26

� �
; RD ¼

D16 D12

D66 D26

� �
;

TA ¼
A66 A26

A26 A22

� �
; TB ¼

B66 B26

B26 B22

� �
; TD ¼

D66 D26

D26 D22

� �
:

ð3:21Þ

By expanding (3.19a) with the assist of (3.21), we observe that the 2nd and 5th equations of (3.19a) will

ensure the equality bu
1 ¼ �lbu

2, which is also the consequence of the symmetry of in-plane forces, i.e.,

N12 ¼ N21 by (3.9a)1. Moreover, it is observed that the 4th and 7th equations of (3.19a) are identical, which

has also been noticed by Cheng and Reddy (2002). Due to the equivalence of the 4th and 7th equations,

only seven independent equations remain in (3.19a). The extra independent equation may come from the

equality of (3.8), which is a result of thin plate Kirchhoff assumption because the slopes bx and by are not

independent in the classical lamination theory both of them are related to the deflection w. According to the
suggestion of Cheng and Reddy (2002), the complete eigenrelation is given by adding (3.8) with two ar-

bitrarily different multipliers respectively to the 4th and 7th equations of (3.19a). To have a definite ex-

pression, we select these two multipliers to be )1/2 and 1/2, and the final complete eigenrelation can then be

expressed as

Ndn ¼ ln; ð3:22aÞ
where

Nd ¼ L2

�
þ 1

2
J2
��1

L1

�
þ 1

2
J1
�
; ð3:22bÞ

and

L1 ¼
Q 0

RT �I

� �
; L2 ¼ �

R I

T 0

� �
; n ¼

a

b

� �
;

J1 ¼
�I44 �I43
I34 I33

� �
; J2 ¼

�I43 I44

I33 �I34

� �
:

ð3:22cÞ

4. Mixed formalism

In (2.4), the constitutive laws are written by expressing the resultant forces/moments in terms of mid-
plane strains/curvatures, which is similar to the use of elastic constants Cijkl for the elastic solids. In
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applications, sometimes it is convenient by using the compliances Sijkl, i.e., expressing the mid-plane strains/

curvatures in terms of resultant forces/moments. In this section, mixed expression will be used with mid-

plane strains and moments as basic functions. The mixed formulation has been adopted by various re-

searchers for various applications, e.g., Jones (1974), Reissner (1980) and Zienkiewicz and Taylor (1989). In
order to get a clear relation about these expressions, we re-write (2.4) in the matrix form as

N
M

� �
¼ A B

B D

� �
e0
j

� �
; ð4:1Þ

which may lead to the following mixed expression

N
j

� �
¼

eAA eBB
�eBBT eDD
� �

e0
M

� �
; ð4:2aÞ

whereeAA ¼ A� BD�1B; eBB ¼ BD�1; eDD ¼ D�1: ð4:2bÞ

The inversion of (4.2a), which will also be used in the following derivation, is now written as

e0
M

� �
¼

eAA eBB
�eBBT eDD
� ��1

N
j

� �
¼

eAA
 eBB


�eBB
T eDD


� �
N
j

� �
; ð4:3aÞ

whereeAA
 ¼ A�1; eBB
 ¼ �A�1B; eDD
 ¼ D� BA�1B: ð4:3bÞ

Because A, B and D defined in (2.5) are symmetric matrices, eAA, eDD, eAA
 and eDD
 defined in (4.2b) and (4.3b)

will also be symmetric, whereas eBB and eBB
 may not be symmetric.

Note that in the above matrix expressions, the symbols A, B and N have different representations from

the eigenvector matrices Ad , Bd defined in (3.18c) and the fundamental matrix Nd defined in (3.22). The
former is the traditional notation used in the community of mechanics of composite materials, while the

latter is the notation generally used in the community of anisotropic elasticity. To let the readers from both

communities see clearly what we express in this paper, we just use the subscripts and italic fonts to dis-

tinguish these symbols.

Similar to the displacement formalism, we re-write the mixed constitutive laws (4.2) in terms of tensor

notation as

Nij ¼ eAAijklekl þ eBBijklMkl; jij ¼ �eBBklijekl þ eDDijklMkl; i; j; k; l ¼ 1; 2: ð4:4Þ

Note that due to the two times difference for the tensor notation and contracted notation of shear strain

and twist curvature denoted in (3.2), the following rule should be followedeAApqrs $ eAAij for all i and j; i; j ¼ 1; 2; 6;eBBpqrs $ eBBij if j 6¼ 6;eBBpqrs $ 1
2
eBBij if j ¼ 6;eDDpqrs $ eDDij if i; j 6¼ 6;eDDpqrs $ 1
2
eDDij if either i or j ¼ 6;eDDpqrs $ 1

4
eDDij if both i and j ¼ 6:

ð4:5Þ

Because the basic functions we use in the mixed constitutive laws are the strains eij and moments Mij, the

kinematic relations shown in (3.1)2 and the equilibrium equations shown in (3.1)4 are better replaced by
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eij ¼ 1
2
ðui;j þ uj;iÞ; Mij ¼ 1

2
ðwi;j
 þ wj;i
 Þ;

Nij;j ¼ 0; jij;j
 ¼ 0;
ð4:6Þ

where the superscript 
 denotes the coordinate system ðx
1; x
2Þ which is related to ðx1; x2Þ by
x
1 ¼ �x2; x
2 ¼ x1: ð4:7Þ

By (4.7), we have o=ox
1 ¼ �o=ox2 and o=ox
2 ¼ o=ox1. Thus, the expressions in (4.6) for Mij and jij are

equivalent to

M11 ¼ �w1;2; M22 ¼ w2;1; M12 ¼ ðw1;1 � w2;2Þ=2;
j11;2 � j12;1 ¼ 0; j12;2 � j22;1 ¼ 0:

ð4:8Þ

The three equations of (4.8)1 show that the moments defined in the second equation of (4.6)1 will auto-
matically satisfy the equilibrium equation

Mij;ij ¼ 0: ð4:9Þ

On the other hand, the kinematic relations for the curvatures shown in the second and third equations of

(3.1)1 and the third equation of (3.1)2 will lead to

j11 ¼ �w;11; j22 ¼ �w;22; j12 ¼ �w;12; ð4:10Þ
which will then automatically satisfy the two equations of (4.8)2, i.e., the second equation of (4.6)2. In other

words, we may call the second equation of (4.6)1 as the kinematic relation for the moments, and the second
equation of (4.6)2 as the compatibility equation for the curvatures.

Substituting (4.6)1 into (4.4), the resultant forces and curvatures may be expressed in terms of mid-plane

displacements ui and stress function wi as

Nij ¼ eAAijkluk;l þ eBBijklwk;l
 ; jij ¼ �eBBklijuk;l þ eDDijklwk;l
 : ð4:11Þ

With this result, the equilibrium equations and compatibility equations shown in (4.6)2 may also be ex-

pressed in terms of mid-plane displacements ui and stress function wi aseAAijkluk;lj þ eBBijklwk;l
j ¼ 0; �eBBklijuk;lj
 þ eDDijklwk;l
j
 ¼ 0: ð4:12Þ

Like the derivation for the displacement formalism, we may now let

uk ¼ au
kf ðzÞ; wk ¼ aw

k f ðzÞ; z ¼ x1 þ lx2; k ¼ 1; 2: ð4:13Þ

Substituting (4.13) into (4.12) with the use of (4.7), we obtain

fQ ~AA þ lðR ~AA þ RT
~AAÞ þ l2T ~AAgau þ fR ~BB þ lðT ~BB �Q ~BBÞ � l2 eRR ~BBgaw ¼ 0;

f�RT
~BB þ lðQT

~BB � TT
~BBÞ þ l2 eRRT

~BBgau þ fT ~DD � lðR ~DD þ RT
~DDÞ þ l2Q ~DDgaw ¼ 0;

ð4:14aÞ

where

au ¼
au
1

au
2

� �
; aw ¼ aw

1

aw
2

� �
; ð4:14bÞ

and the definition of Q, R and T are the same as those given in (3.7b). Concerning the unsymmetry of eBB, a
new matrix eRR ~BB is defined byeRR ~BB ¼ eBBi2k1: ð4:15Þ
With the understanding of the transformation rules given in (3.2) and (4.5), we may write down the ex-

pressions of Q ~AA;Q ~BB; . . . ;T ~DD,
eRR ~BB defined in (3.7b) and (4.15) as
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Q ~AA ¼
eAA11

eAA16eAA16
eAA66

" #
; Q ~BB ¼

eBB11
1
2
eBB16eBB61

1
2
eBB66

24 35; Q ~DD ¼
eDD11

1
2
eDD16

1
2
eDD16

1
4
eDD66

24 35;
R ~AA ¼

eAA16
eAA12eAA66
eAA26

" #
; R ~BB ¼

1
2
eBB16

eBB12

1
2
eBB66

eBB62

24 35; R ~DD ¼
1
2
eDD16

eDD12

1
4
eDD66

1
2
eDD26

24 35; eRR ~BB ¼
eBB61

1
2
eBB66eBB21

1
2
eBB26

24 35;
T ~AA ¼

eAA66
eAA26eAA26
eAA22

" #
; T ~BB ¼

1
2
eBB66

eBB62

1
2
eBB26

eBB22

24 35; T ~DD ¼
1
4
eDD66

1
2
eDD26

1
2
eDD26

eDD22

24 35:
ð4:16Þ

Substituting (4.13) into (4.11), we have

Ni1 ¼ �lbuf 0ðzÞ; Ni2 ¼ buf 0ðzÞ;
ji1 ¼ bwf 0ðzÞ; ji2 ¼ lbwf 0ðzÞ;

ð4:17aÞ

where

bu ¼ ðRT
~AA þ lT ~AAÞau þ ðT ~BB � leRR ~BBÞaw

¼ � 1

l
fðQ ~AA þ lR ~AAÞau þ ðR ~BB � lQ ~BBÞawg;

bw ¼ �ðQT
~AA þ leRRT

~BBÞau þ ðR ~DD � lQ ~DDÞaw

¼ � 1

l
fðRT

~BB þ lTT
~BBÞau � ðT ~DD � lRT

~DDÞawg:

ð4:17bÞ

Note that the second equalities of (4.17b)1 and (4.17b)2 come from the two equations of (4.14a). Observing

the results obtained in (4.17), we introduce one stress function /i and one slope function bi as

/i ¼ bu
i f ðzÞ; bi ¼ bw

i f ðzÞ: ð4:18Þ
With the use of these two functions, the resultant forces and curvatures can be expressed as

Ni1 ¼ �/i;2; Ni2 ¼ /i;1;

ji1 ¼ bi;1; ji2 ¼ bi;2:
ð4:19Þ

By (4.18) and (4.19), the symmetry requirement N12 ¼ N21 and j12 ¼ j21 may lead to

�lbu
2 ¼ bu

1; bw
2 ¼ lbw

1 : ð4:20Þ

Similar to the displacement formalism, by superimposing all the associated solutions shown in (4.13) and

(4.18), the general solutions to the basic equations (4.4) and (4.6) can be written in a compact matrix form

as

um ¼ 2RefAmfðzÞg; /m ¼ 2RefBmfðzÞg; ð4:21aÞ
where

um ¼ u

w

� �
; /m ¼ /

b

� �
; ð4:21bÞ

Am ¼ ~aa1 ~aa2 ~aa3 ~aa4
� �

; Bm ¼ ~bb1 ~bb2 ~bb3 ~bb4
� �

; ð4:21cÞ
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and

~aak ¼
au
aw

� �
k

; ~bbk ¼
bu
bw

� �
k

; k ¼ 1; 2; 3; 4: ð4:21dÞ

Like the displacement formalism, (4.17b) can be re-organized into the following eigenrelationeQQ 0eRRT �I

� �
~aa
~bb

� �
¼ l �eRR �I

�eTT 0

� �
~aa
~bb

� �
; ð4:22aÞ

where

fQQ ¼ Q ~AA R ~BB

RT
~BB �T ~DD

� �
; eRR ¼ R ~AA �Q ~BB

TT
~BB RT

~DD

� �
; eTT ¼ T ~AA �eRR ~BB

�eRRT
~BB �Q ~DD

" #
: ð4:22bÞ

Better than the eigenrelation of the displacement formalism shown in (3.19a), Eq. (4.22a) has exactly the

same form as that of Stroh formalism for two-dimensional problems. Therefore, all the relations originated

from the eigenrelation for the two-dimensional problems can automatically be copied to the present ei-

genrelation of mixed formalism. By using the inverse relation

�eRR �I
�eTT 0

� ��1

¼ 0 �eTT�1

�I eRReTT�1

� �
; ð4:23Þ

the eigenrelation (4.22a) can then be written into the following standard eigenrelation as

Nm
~nn ¼ l~nn; ð4:24aÞ

where

Nm ¼
eNN1

eNN2eNN3
eNNT

1

� �
; ~nn ¼ ~aa

~bb

� �
; ð4:24bÞ

and eNN1 ¼ �eTT�1 eRRT; eNN2 ¼ eTT�1 ¼ eNNT
2 ;

eNN3 ¼ eRReTT�1 eRRT � eQQ ¼ eNNT
3 : ð4:24cÞ

5. Explicit expressions for the material eigenvectors and fundamental matrix

As shown in the general solution (3.18) or (4.21) and the eigenrelation (3.22) or (4.24), the material

eigenvector matrices (Ad , Bd for displacement formalism and Am, Bm for the mixed formalism) and the
fundamental matrix (Nd for displacement formalism and Nm for the mixed formalism) play important roles

in the Stroh-like formalism for the coupled stretching–bending analysis. Like the Stroh formalism for two-

dimensional problems, it would be of much benefit if we can get the explicit expressions of the material

eigenvectors and the fundamental matrix. If one is familiar with the Stroh formalism, one should observe

that the explicit expressions of material eigenvectors for two-dimensional problems are obtained from the

benefit of the stress-based Lekhnitskii formalism (Ting, 1996). Whereas, the explicit expressions of the

fundamental matrices are obtained from definitions same as those given in (4.24a) for the mixed formalism

not those given in (3.22b,c) for the displacement formalism (Ting, 1996). That is why until now no explicit
expressions for the material eigenvectors and fundamental matrices have been obtained in the literature

even the displacement formalism has been presented several years ago.
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To show the benefits of the mixed formalism, the explicit expressions for the material eigenvectors and

fundamental matrices will now be obtained based upon the mixed formalism presented in Section 4.

5.1. Material eigenvectors

To find the explicit expressions of material eigenvectors, we first consider the constitutive laws shown in

(4.3). By using (4.6)1, (4.13), (4.18), (4.19) and the relation obtained in (4.20), we get

e11
e22
2e12
M11

M22

M12

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼

au
1

lau
2

lau
1 þ au

2

�law
1

aw
2

ðaw
1 � law

2 Þ=2

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
f 0ðzÞ;

N11

N22

N12

j11

j22

2j12

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼

l2bu
2

bu
2

�lbu
2

bw
1

l2bw
1

2lbw
1

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
f 0ðzÞ: ð5:1Þ

Substituting (5.1) into (4.3), and expanding its results into six equations, we obtain

au
1 ¼ p1bu

2 þ q1b
w
1 ; lau

2 ¼ p2bu
2 þ q2b

w
1 ; lau

1 þ au
2 ¼ p6bu

2 þ q6b
w
1 ;

� law
1 ¼ �h1bu

2 þ g1b
w
1 ; aw

2 ¼ �h2bu
2 þ g2b

w
1 ; ðaw

1 � law
2 Þ=2 ¼ �h6bu

2 þ g6b
w
1 ;

ð5:2aÞ

where

pj ¼ l2eAA

j1 þ eAA


j2 � leAA

j6; qj ¼ eBB


j1 þ l2eBB

j2 þ 2leBB


j6;

hj ¼ l2eBB

1j þ eBB


2j � leBB

6j; gj ¼ eDD


j1 þ l2 eDD

j2 þ 2leDD


j6:
ð5:2bÞ

Since both of the three equations of (5.2a)1 and (5.2a)2 are not independent each other, by standard

elimination procedure with proper multiplication, addition and subtraction we may obtain

l1bu
2 þ l2b

w
1 ¼ 0; l3bu

2 � l4b
w
1 ¼ 0; ð5:3aÞ

where

l1 ¼ lp1 þ
p2
l
� p6; l2 ¼ lq1 þ

q2
l
� q6;

l3 ¼
h1
2l

þ lh2
2

þ h6; l4 ¼
g1
2l

þ lg2
2

þ g6:
ð5:3bÞ

Eqs. (5.3) show that nontrivial solutions of bu
2 and bw

1 exist only when

l1ðlÞl4ðlÞ þ l2ðlÞl3ðlÞ ¼ 0: ð5:4Þ

By viewing (5.2b) and (5.3b), we know that (5.4) is an 8th order polynomial which should lead to the same
eigenvalues as those obtained from the eigenvalue relation (4.24). Furthermore, after obtaining the

eigenvalues from (5.4), Eq. (5.3) may give us
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bw
1 ¼ kbu

2; k ¼ � l1
l2

¼ l3
l4

if l2 and=or l4 6¼ 0; ð5:5aÞ
or,

bu
2 ¼ k�1bw

1 ; k�1 ¼ � l2
l1

¼ l4
l3

if l1 and=or l3 6¼ 0: ð5:5bÞ

With the results of (4.20), (5.5) and (5.2), the explicit expressions for the eigenvectors ~aa and ~bb can then be

written as

~aa ¼ au

aw

� �
¼

p1 þ kq1
ðp2 þ kq2Þ=l
ðh1 � kg1Þ=l
�h2 þ kg2

8>>><>>>:
9>>>=>>>;; ~bb ¼ bu

bw

� �
¼

�l

1

k

kl

8>>><>>>:
9>>>=>>>; if l2 and=or l4 6¼ 0; ð5:6aÞ

or,

~aa ¼
au

aw

( )
¼

k�1p1 þ q1

ðk�1p2 þ q2Þ=l
ðk�1h1 � g1Þ=l
�k�1h2 þ g2

8>>>><>>>>:

9>>>>=>>>>;; ~bb ¼
bu

bw

( )
¼

�k�1l

k�1

1

l

8>>>><>>>>:

9>>>>=>>>>; if l1 and=or l3 6¼ 0: ð5:6bÞ

5.2. Fundamental matrix

From the definition given in (4.24), we know that the fundamental matrix Nm of the mixed formalism is a

8� 8 matrix which is related to the extensional, bending and coupling stiffness matrices. Although it looks

complicated, it is not difficult to get the explicit expression because the definition of the fundamental matrix

given in (4.24) has been purposely arranged to be the same as that of the two-dimensional problems. With
this understanding, by following the steps described in Ting�s book (1996) for Stroh formalism we can find

the explicit expressions of Nm. This benefit for the mixed formalism cannot be applied to the displacement

formalism because the definition given in (3.22) is not perfectly matched with the Stroh formalism for two-

dimensional problems. In Section 7, we will try to find the relation between Nm and Nd through the proper

comparison of these two formalisms. With that relation, the explicit expression of Nd can be found easily

via Nm.

Followings are the explicit expressions of eNNi, i ¼ 1; 2; 3; which are the sub-matrices of Nm. Detailed

derivation may be found in (Hsieh and Hwu, 2002b).

eNN1 ¼
1eDD

X11 X12 0 X14

X21 0 0 X24

X31 0 0 X34

X41 0 X43 X44

26666664

37777775; eNN2 ¼
1eDD

Y11 Y12 Y13 Y14

Y12 Y22 Y23 Y24

Y13 Y23 Y33 Y34

Y14 Y24 Y34 Y44

26666664

37777775;

eNN3 ¼
1eDD

�eDD

22 0 0 eBB


12

0 0 0 0

0 0 0 0eBB

12 0 0 eAA


11

26666664

37777775; ð5:7aÞ
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whereeDD ¼ eBB

12
eBB

12 þ eAA


11
eDD


22;

X11 ¼ eAA

16
eDD


22 þ eBB

12
eBB

62; X12 ¼ �ðeAA


11
eDD


22 þ eBB

12
eBB

12Þ; X14 ¼ eAA


11
eBB

62 � eAA


16
eBB

12;

X21 ¼ eAA

12
eDD


22 þ eBB

12
eBB

22; X24 ¼ eAA


11
eBB

22 � eAA


12
eBB

12;

X31 ¼ eBB

11
eDD


22 � eBB

12
eDD


12; X34 ¼ �ðeAA

11
eDD


12 þ eBB

11
eBB

12Þ;

X41 ¼ 2ðeBB

16
eDD


22 � eBB

12
eDD


26Þ; X43 ¼ eAA

11
eDD


22 þ eBB

12
eBB

12; X44 ¼ �2ðeAA


11
eDD


26 þ eBB

16
eBB

12Þ

Y11 ¼ eAA

11
eBB
2
62 þ eAA


66
eBB
2
12 þ eAA


11
eAA

66
eDD


22 � eAA
2
16
eDD


22 � 2eAA

16
eBB

12
eBB

62;

Y12 ¼ eAA

11
eBB

22
eBB

62 þ eAA


26
eBB
2
12 þ eAA


11
eAA

26
eDD


22 � eAA

12
eAA

16
eDD


22 � eAA

12
eBB

12
eBB

62 � eAA


16
eBB

12
eBB

22;

Y13 ¼ eAA

16
eBB

12
eDD


12 þ eBB
2
12
eBB

61 þ eAA


11
eBB

61
eDD


22 � eAA

16
eBB

11
eDD


22 � eAA

11
eBB

62
eDD


12 � eBB

11
eBB

12
eBB

62;

Y14 ¼ 2ðeAA

16
eBB

12
eDD


26 þ eBB
2
12
eBB

66 þ eAA


11
eBB

66
eDD


22 � eAA

16
eBB

16
eDD


22 � eAA

11
eBB

62
eDD


26 � eBB

12
eBB

16
eBB

62Þ;

Y22 ¼ eAA

11
eBB
2
22 þ eAA


22
eBB
2
12 þ eAA


11
eAA

22
eDD


22 � eAA
2
12
eDD


22 � 2eAA

12
eBB

12
eBB

22;

Y23 ¼ eAA

12
eBB

12
eDD


12 þ eBB
2
12
eBB

21 þ eAA


11
eBB

21
eDD


22 � eAA

12
eBB

11
eDD


22 � eAA

11
eBB

22
eDD


12 � eBB

11
eBB

12
eBB

22;

Y24 ¼ 2ðeAA

12
eBB

12
eDD


26 þ eBB
2
12
eBB

26 þ eAA


11
eBB

26
eDD


22 � eAA

12
eBB

16
eDD


22 � eAA

11
eBB

22
eDD


26 � eBB

12
eBB

16
eBB

22Þ;

Y33 ¼ eAA

11
eDD
2

12 þ 2eBB

11
eBB

12
eDD


12 � eBB
2
11
eDD


22 � eBB
2
12
eDD


11 � eAA

11
eDD


11
eDD


22;

Y34 ¼ 2ðeBB

12
eBB

16
eDD


12 þ eAA

11
eDD


12
eDD


26 þ eBB

11
eBB

12
eDD


26 � eAA

11
eDD


16
eDD


22 � eBB
2
12
eDD


16 � eBB

11
eBB

16
eDD


22Þ;
Y44 ¼ 4ðeAA


11
eDD
2

26 þ 2eBB

12
eBB

16
eDD


26 � eBB
2
16
eDD


22 � eBB
2
12
eDD


66 � eAA

11
eDD


22
eDD


66Þ;

ð5:7bÞ

in which eAA
, eBB
 and eDD
 are defined in (4.3b).

6. Reduction to symmetric laminates

In our previous derivation, displacement or mixed formalism, no symmetry condition is required on the
laminates. In practical engineering applications, it is common to design a symmetric laminate whose

coupling stiffnesses Bij are zero. For this kind of composite structures, the in-plane problem and plate

bending problem will be decoupled. Recently, without involving the coupling conditions, I developed a

Stroh-like formalism for the anisotropic plate through the Stroh–Lekhnitskii�s connection (Hwu, in press).

Because that formalism only considers the plate bending problems, to avoid coupling effects the anisotropic

plates should have one plane of elastic symmetry located at the mid-plane of the plate. Therefore, it can

only be applied directly to the symmetric laminates not the general composite laminates with coupling.

Because that formalism has been checked carefully with Lekhnitskii formulation (1968) and applied to
solve many practical problems such as holes/cracks/inclusions (Hsieh and Hwu, 2002a), it should be

suitable to use that formalism as a check of our present formalisms by just reducing our results to the

symmetric laminates.

6.1. Displacement formalism

Substituting Bij ¼ 0 into (3.21), we obtain QB ¼ RB ¼ TB ¼ 0. With this result and the definitions of Q,

R and T given in (3.19b), the eigenrelation (3.22) can now be separated into two parts as

�RA �I
�TA 0

� ��1
QA 0

RT
A �I

� �
au
bu

� �
¼ l

au
bu

� �
; ð6:1Þ
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and

�RD � 1
2
I21 �Iþ 1

2
I22

�TD þ 1
2
I11 � 1

2
I12

" #�1
QD � 1

2
I22 � 1

2
I21

RT
D þ 1

2
I12 �Iþ 1

2
I11

" #
ab

bb

� �
¼ l

ab

bb

� �
: ð6:2Þ

In the above, (6.1) corresponds to the in-plane problems, while (6.2) corresponds to the plate bending
problems. By careful comparison, we see that (6.1) is identical to that for two-dimensional problems (Ting,

1996), but (6.2) looks different. Substituting (3.21) into (6.2) and performing 4� 4 matrix inversion and

multiplication carefully (this work may be manipulated with the assist of symbolic computational software

such as Mathematica), we obtain

Nbnb ¼ lnb; nb ¼ ab

bb

� �
; ð6:3aÞ

where

Nb ¼

0 1 0 0

�D12

D22
�2D26

D22
0 1

D22

�D11 þ
D2

12

D22
�2 D16 � D12D26

D22

� �
0 �D12

D22

�2 D16 � D12D26

D22

� �
�4 D66 �

D2
26

D22

 !
1 �2D26

D22

26666666664

37777777775
: ð6:3bÞ

In order to check the result (6.3) with that presented in my previous paper for the symmetric laminates

(Hwu, in press), we need to unify the definitions of the eigenvectors. With this consideration, it can easily be

proved that Nb obtained in (6.3b) is identical to that shown in (Hwu, in press). A convenient reference for
the comparison is shown in Tables 1 and 2, which will be discussed in detail in the next section.

Because the eigenvalues and eigenvectors for the symmetric laminates can be separated into two parts,

in-plane problem and plate bending problem, the general solutions shown in (3.18) should also be separated

into these two parts. They are

u ¼ 2RefAufðzÞg; / ¼ 2RefBufðzÞg;
b ¼ 2RefAbfðzÞg; w ¼ 2RefBbfðzÞg;

ð6:4aÞ

where

Au ¼ ðauÞ1 ðauÞ2½ �; Bu ¼ ðbuÞ1 ðbuÞ2½ �;
Ab ¼ ðabÞ1 ðabÞ2½ �; Bb ¼ ðbbÞ1 ðbbÞ2½ �;

ð6:4bÞ

and

fðzÞ ¼
f1ðz1Þ
f2ðz2Þ

� �
: ð6:4cÞ

From the solutions shown in (6.4) for the in-plane and plate bending problems, we see that they have

exactly the same form as that for the Stroh formalism of two-dimensional problems. Again, the formalism

for the plate bending problem, (6.4a)2 and (6.4b)2, is exactly the same as that presented in (Hwu, in press).
One should note that in (Hwu, in press), the definitions for the slope vectors b and the stress function vector
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Table 1

Comparison of general solutions

Stroh formalism for two-

dimensional problem (in-plane

and antiplane coupling)

(Ting, 1996)

Stroh-like formalism for plate

bending problem (Hwu, in press;

Hsieh and Hwu, 2002a)

Displacement formalism

(in-plane and plate bending

coupling)

Mixed formalism (in-plane and

plate bending coupling)

General

solution

u ¼ 2RefAfðzÞg w ¼ 2RefAw0ðzÞg ud ¼ 2RefAd fðzÞg um ¼ 2RefAmfðzÞg
/ ¼ 2RefBfðzÞg b ¼ 2RefBw0ðzÞg /d ¼ 2RefBd fðzÞg /m ¼ 2RefBmfðzÞg

ud ¼ u

b

� �
; /d ¼ /

w

� �
um ¼ u

w

� �
; /m ¼ /

b

� �
A ¼ a1 a2 a3½ � A ¼ a1 a2½ � Ad ¼ a1 a2 a3 a4½ � Am ¼ ~aa1 ~aa2 ~aa3 ~aa4½ �
B ¼ b1 b2 b3½ � B ¼ b1 b2½ � Bd ¼ b1 b2 b3 b4½ � Bm ¼ ~bb1 ~bb2 ~bb3 ~bb4

� �
a ¼ au

ab

� �
; b ¼ bu

bb

� �
~aa ¼ au

aw

� �
; ~bb ¼ bu

bw

� �

fðzÞ ¼
f1ðz1Þ
f2ðz2Þ
f3ðz3Þ

8<:
9=; w0ðzÞ ¼ w0

1ðz1Þ
w0

2ðz2Þ

� �
fðzÞ ¼

f1ðz1Þ
f2ðz2Þ
f3ðz3Þ
f4ðz4Þ

8>><>>:
9>>=>>; fðzÞ ¼

f1ðz1Þ
f2ðz2Þ
f3ðz3Þ
f4ðz4Þ

8>><>>:
9>>=>>;

zk ¼ x1 þ lkx2 zk ¼ x þ lky zk ¼ x1 þ lkx2 zk ¼ x1 þ lkx2

ri1 ¼ �/i;2; ri2 ¼ /i;1 w ¼ �
R

My dx
�
R

Mx dy

� �
b1 ¼ �w;1; b2 ¼ �w;2 b1 ¼ �w;1; b2 ¼ �w;2

Ni1 ¼ �/i;2; Ni2 ¼ /i;1 Ni1 ¼ �/i;2; Ni2 ¼ /i;1

b ¼ � ow
oy

ow
ox

� �
Mi1 ¼ �wi;2 � 1

2
ki1wk;k ; Mi1 ¼ �wi;2 � 1

2
ki1wk;k ;

Mi2 ¼ wi;1 � 1
2
ki2wk;k Mi2 ¼ wi;1 � 1

2
ki2wk;k

Q1 ¼ � 1
2
wk;k2; Q2 ¼ 1

2
wk;k1 Q1 ¼ � 1

2
wk;k2; Q2 ¼ 1

2
wk;k1

V1 ¼ �w2;22; V2 ¼ w1;11 V1 ¼ �w2;22; V2 ¼ w1;11

Mn ¼ �sTw;s; Mt ¼ �nTw;n

Mnt ¼ ðsTw;n þ nTw;sÞ=2
Qn ¼ �ðsTw;ns � nTw;ssÞ=2
Qt ¼ ðsTw;nn � nTw;snÞ=2
Vn ¼ �nTw;ss; Vt ¼ sTw;nn

C
.
H

w
u

/
In

tern
a
tio

n
a
l
J
o
u
rn

a
l
o
f

S
o
lid

s
a
n
d

S
tru

ctu
res

4
0

(
2
0
0
3
)

3
6
8
1
–
3
7
0
5

3
6
9
9



Table 2

Comparison of eigenrelations

Stroh formalism for two-

dimensional problem

(in-plane and antiplane

coupling) (Ting, 1996)

Stroh-like formalism for

plate bending problem

(Hwu, in press)

Displacement formalism (in-plane and

plate bending coupling)

Mixed formalism (in-plane and plate

bending coupling)

Eigen

relation

Nn ¼ ln

N ¼ N1 N2

N3 NT
1

� �
;

n ¼ a

b

� �
Nn ¼ ln

N ¼ N1 N2

N3 NT
1

� �
;

n ¼ a

b

� �
Ndn ¼ ln
Nd ¼ L2 þ 1

2
J2

� ��1
L1 þ 1

2
J1

� �
;

Nm
~nn ¼ l~nn

Nm ¼
eNN1

eNN2eNN3
eNNT

1

� �
; ~nn ¼ ~aa

~bb

� �
n ¼ a

b

� �

N1 ¼ �T�1RT; N2 ¼ T�1 N1 ¼ �T�1RT; N2 ¼ T�1 L1 ¼
Q 0

RT �I

� �
; L2 ¼ � R I

T 0

� �
, eNN1 ¼ �eTT�1 eRRT; eNN2 ¼ eTT�1,

N3 ¼ RT�1RT �Q N3 ¼ RT�1RT �Q J1 ¼
�I44 �I43
I34 I33

� �
; J2 ¼

�I43 I44
I33 �I34

� � eNN3 ¼ eRReTT�1 eRRT � eQQ

Qik ¼ Ci1k1, Rik ¼ Ci1k2,

Tik ¼ Ci2k2

Cijkl: elastic constants

Q ¼ D

22 � 1

2
D


26

� 1
2
D


26
1
4
D


66

� �
;

R ¼ � 1
2
D


26 D

12

1
4
D


66 � 1
2
D


16

� �
;

T ¼
1
4
D


66 � 1
2
D


16

� 1
2
D


16 D

11

" #

Q ¼ QA QB

QB QD

� �
; R ¼ RA RB

RB RD

� �
;

T ¼ TA TB

TB TD

� �
fQQ ¼

Q ~AA R ~BB

RT
~BB �T ~DD

� �
; eRR ¼

R ~AA �Q ~BB

TT
~BB RT

~DD

� �
;

eTT ¼ T ~AA �eRR ~BB

�eRRT
~BB �Q ~DD

" #

QA ¼ A11 A16

A16 A66

� �
; QB ¼ B11 B16

B16 B66

� �
;

QD ¼ D11 D16

D16 D66

� �
Q ~AA ¼

eAA11
eAA16eAA16
eAA66

� �
; Q ~BB ¼

eBB11
1
2
eBB16eBB61

1
2
eBB66

" #
;

Q ~DD ¼
eDD11

1
2
eDD16

1
2
eDD16

1
4
eDD66

" #

RA ¼ A16 A12

A66 A26

� �
; RB ¼ B16 B12

B66 B26

� �
;

RD ¼ D16 D12

D66 D26

� � R ~AA ¼
eAA16

eAA12eAA66
eAA26

� �
; R ~BB ¼

1
2
eBB16

eBB12

1
2
eBB66

eBB62

" #
;

R ~DD ¼
1
2
eDD16

eDD12

1
4
eDD66

1
2
eDD26

" #

3
7
0
0

C
.
H

w
u

/
In

tern
a
tio

n
a
l
J
o
u
rn

a
l
o
f

S
o
lid

s
a
n
d

S
tru

ctu
res

4
0

(
2
0
0
3
)

3
6
8
1
–
3
7
0
5



TA ¼ A66 A26

A26 A22

� �
; TB ¼ B66 B26

B26 B22

� �
;

TD ¼ D66 D26

D26 D22

� �
D


ij: inverse bending

stiffness D�1

Aij: extensional stiffness

Bij: coupling stiffness

Dij: bending stiffness

T ~AA ¼
eAA66

eAA26eAA26
eAA22

� �
; T ~BB ¼

1
2
eBB66

eBB62

1
2
eBB26

eBB22

" #
;

T ~DD ¼
1
4
eDD66

1
2
eDD26

1
2
eDD26

eDD22

" #

eRR ~BB ¼
eBB61

1
2
eBB66eBB21

1
2
eBB26

" #

eAA ¼ A� BD�1B; eBB ¼ BD�1; eDD ¼ D�1

C
.
H

w
u

/
In

tern
a
tio

n
a
l
J
o
u
rn

a
l
o
f

S
o
lid

s
a
n
d

S
tru

ctu
res

4
0

(
2
0
0
3
)

3
6
8
1
–
3
7
0
5

3
7
0
1



w and their associated eigenvectors Ab and Bb are slight different from the present ones. The definitions

given in (Hwu, in press) can also be found in Tables 1 and 2.

6.2. Mixed formalism

Substituting Bij ¼ 0 into (4.2), we obtain eAA ¼ A, eBB ¼ 0, eDD ¼ D�1, which will then lead to

Q ~BB ¼ R ~BB ¼ eRR ~BB ¼ T ~BB ¼ 0 by (4.16). With this result and the definitions of eQQ, eRR and eTT given in (4.22b), the

eigenrelation (4.24) can now be separated into two parts as

�T�1
A R

T
A T�1

A

RAT
�1
A R

T
A �QA �RAT

�1
A

" #
au

bu

( )
¼ l

au

bu

( )
; ð6:5Þ

and

Q�1
~DD R ~DD �Q�1

~DD

�RT
~DDQ

�1
~DD R ~DD þ T ~DD RT

~DDQ
�1
~DD

" #
aw

bw

( )
¼ l

aw

bw

( )
: ð6:6Þ

Similar to the displacement formalism, eigenrelations (6.5) and (6.6) correspond to the in-plane and plate
bending problems respectively. By simple inversion and multiplication, it can easily be proved that (6.1) and

(6.5) are equivalent. To prove that (6.6) is identical to (6.2), we firstly note that

aw ¼ bb; bw ¼ ab; ð6:7Þ

which can be observed from (3.5), (3.15), (4.13) and (4.18). With this understanding, through the use of

(4.16) we can prove that (6.6) is identical to (6.2). Actually, (6.6) has exactly the same form as that presented

in (Hwu, in press), and hence the proof of its equivalence is more direct and simple than (6.2).
Similar to the displacement formalism, the general solutions shown in (4.21) can also be separated into

two parts, which are exactly the same as those shown in (6.4).

Because the explicit expressions for the eigenvectors have been obtained in the mixed formalism, in the

following we like to check our results by using the case of symmetric laminates. Substituting Bij ¼ 0 into

(4.3b), we have eAA
 ¼ A�1, eBB
 ¼ 0, eDD
 ¼ D. If we use A

ij to denote the components of A�1, (5.2b) gives us

qj ¼ hj ¼ 0; pj ¼ l2A

j1 þ A


j2 � lA

j6; gj ¼ Dj1 þ l2Dj2 þ 2lDj6; ð6:8Þ

which will then lead to, by the use of (5.3b),

l2 ¼ l3 ¼ 0: ð6:9Þ
With this result, the characteristic equation for the eigenvalues shown in (5.4) becomes

l1ðlÞl4ðlÞ ¼ 0: ð6:10Þ
In the above, l1ðlÞ ¼ 0 will provide the eigenvalues for the in-plane problems, whereas l4ðlÞ ¼ 0 will

provide the eigenvalues for the plate bending problems. The explicit expressions for the eigenvectors can

therefore be separated into two parts. One is from (5.6a), and the other is from (5.6b). They are

au ¼
p1

p2=l

� �
; bu ¼

�l
1

� �
for in-plane problems; ð6:11aÞ

aw ¼ �g1=l
g2

� �
; bw ¼ 1

l

� �
for plate bending problems; ð6:11bÞ

which are identical to those shown in Ting (1996) for the in-plane problems and in Hwu (in press) for the
plate bending problems.

3702 C. Hwu / International Journal of Solids and Structures 40 (2003) 3681–3705



Substituting eAA
 ¼ A�1, eBB
 ¼ 0, eDD
 ¼ D into (5.7) for the symmetric laminates, we can also prove that

the two separate parts of the explicit expressions of the fundamental matrices corresponding to the in-plane

and bending problems are exactly the same as those presented in the literature (Ting, 1996; Hwu, in press).

7. Comparison and discussion

In Ting�s book (1996) and several research works, we observe that through the use of the eigenrelation

many useful identities relating the material properties to the eigenmodes of stress functions and displace-

ments can be established. With the assist of these identities, many problems that are left with unsolved

linear algebraic system can be solved explicitly. Moreover, many complex variable form solutions may be

transformed to real form solutions. With this understanding, in this section the comparison will be em-

phasized upon the resemblance of the general solutions and their associated eigenrelations, because the

more alike to the Stroh formalism the more possible we can benefit from the experience of two-dimensional

problems.
Table 1 shows the comparison between the general solutions presented by the Stroh formalism for two-

dimensional problem (Ting, 1996), Stroh-like formalism for plate bending problem (Hwu, in press), and

displacement formalism and mixed formalism presented in this paper. From this Table, we see that the

Stroh-like formalism for the plate bending problem is really very alike to the Stroh formalism for two-

dimensional problem. The slight difference comes from: (1) the appearance of minus sign and the order of

(y; x) instead of (x; y) in the definitions of the stress function vector w and slope vector b; (2) the eigenvector
matrix A corresponds to the stress function vector instead of the slope vector, and eigenvector matrix B

corresponds to the slope vector instead of the stress function vector. As to the displacement formalism, its
solution form is exactly the same as that of Stroh formalism for two-dimensional problem. While for the

mixed formalism, the in-plane part is still exactly the same as Stroh formalism for two-dimensional

problem, but its plate bending part conforms to the Stroh-like formalism with A corresponding to the stress

function and B corresponding to the slope. Note that in mixed formalism, the sign and the order of the

definitions of w and b have been returned to the normal situation.

Purely from the observation shown in Table 1, one may conclude that displacement formalism should be

the one most alike to the Stroh formalism for two-dimensional problem. However, Table 2 presenting the

eigenrelation shows the opposite. From Table 2, we see that the eigenrelation of Stroh-like formalism for
plate bending problem as well as that of mixed formalism have exactly the same form as that for two-

dimensional problem. However, the eigenrelation for displacement formalism is different by the addition of

the matrices J1 and J2. Because the matrices N1, N2 and N3 play an important role in the Stroh formalism

for two-dimensional problems, they are usually called fundamental matrices. Therefore, although the

displacement formalism has exactly the same form in the general solution, sometimes it may not be a good

choice for the lamination theory due to the lack resemblance of its eigenrelation. Thus, from the viewpoint

of the eigenrelation, the mixed formalism is a better choice than the displacement formalism for solving the

practical lamination problems. However, because the generalized displacement vector um and the gener-
alized stress function vector /m in mixed formalism have their mix nature, it may become inconvenient

when one deals with the pure stress or displacement boundary valued problems. On the other hand, if a

mixed boundary valued problem (prescribed in-plane displacements and out-of-plane bending moments/

effective transverse shear forces, or prescribed in-plane forces and out-of-plane deflections/slopes) is con-

sidered, mixed formalism may be a good choice.

From the above discussion, we know that both the displacement and mixed formalisms are not perfectly

alike to the Stroh formalism for two-dimensional problems. One is alike in general solution, the other is

alike in eigenrelation. To combine the merits from both formalisms, we may use the general solutions
formed by the displacement formalism and when there is a need to count on the eigenrelation we may use
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the eigenrelation from the mixed formalism. From this viewpoint, we need to know the relation between the

fundamental matrices Nd and Nm. By (6.7), we get the following relation

~nn ¼
~aa
~bb

( )
¼

au

aw

bu

bw

8>>><>>>:
9>>>=>>>; ¼

I 0 0 0

0 0 0 I

0 0 I 0

0 I 0 0

26664
37775

au

ab

bu

bb

8>>><>>>:
9>>>=>>>; ¼

I1 I2

I2 I1

� �
a

b

� �
¼ Itn; ð7:1Þ

in which I1, I2 and It are defined through the equalities. Substituting (7.1) into (4.24) and comparing its

results with (3.22), we obtain

Nd ¼ ItNmIt; ð7:2Þ

or in the sub-matrix form,

Nd ¼ N1 N2

N3 NT
1

� �
; ð7:3aÞ

where

N1 ¼ I1 eNN1I1 þ I1 eNN2I2 þ I2 eNN3I1 þ I2 eNNT
1 I2;

N2 ¼ I1 eNN1I2 þ I1 eNN2I1 þ I2 eNN3I2 þ I2 eNNT
1 I1;

N3 ¼ I2 eNN1I1 þ I2 eNN2I2 þ I1 eNN3I1 þ I1 eNNT
1 I2:

ð7:3bÞ

8. Conclusions

Two Stroh-like complex variable formalisms for the coupled stretching–bending analysis of composite

laminates are presented in this paper. One is displacement formalism, and the other is mixed formalism.

The former was introduced previously by the other researchers and re-derived in this paper by a more
Stroh-like way, while the latter is established here to compensate the displacement formalism. In these two

Stroh-like formalisms, the general solutions for the basic equations of lamination theory and their asso-

ciated eigenrelations are all obtained in complex matrix form. From the results and discussions presented in

this paper, we see that both the displacement and mixed formalisms are not perfectly alike to the Stroh

formalism for two-dimensional problems. The displacement formalism is alike in general solution, whereas

the mixed formalism is alike in eigenrelation. To combine the merits from both formalisms, we may use the

general solutions formed by the displacement formalism and when there is a need to count on the eigen-

relation we may use the eigenrelation from the mixed formalism.
By using the presently developed mixed formalism, the explicit expressions for the fundamental matrix

and eigenvectors are obtained first time for the most general composite laminates with coupling. For both

formalisms, almost all the relations have been purposely arranged to have the same form as those of the

Stroh formalism for two-dimensional formalism. Due to the resemblance, almost all the formulae and

mathematical techniques developed for two-dimensional problems can be transferred to the problems of

composite laminates with in-plane and plate bending coupling. By simple analogy, many problems that

cannot be solved previously, now have the possibility to be solved analytically.
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